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Abstract

Lagged correlation analysis of Arctic sea-ice area anomalies reveals that spring

sea-ice anomalies tend to recur the following fall, and fall anomalies tend to recur

the following spring. In this work, this phenomenon, termed sea-ice reemergence,

is investigated in comprehensive climate models and observations. In Chapter 2,

a novel multivariate data analysis technique, coupled nonlinear Laplacian spectral

analysis (NLSA), is introduced. This approach is a generalization of the origi-

nal NLSA algorithm, and allows for unit-independent analysis of multiple physical

variables. In Chapter 3, coupled NLSA is applied to sea-ice concentration (SIC)

and sea-surface temperature (SST) data in the North Pacific sector. In both mod-

els and observations, it is found that low-dimensional families of NLSA modes

are able to reproduce the lagged correlation structure of the raw SIC data. These

“reemergence families” provide an SST–SIC reemergence mechanism, in which per-

sistent summer SST anomalies store the memory of spring SIC anomalies, allowing

for reemergence of these anomalies in the fall season. These families are closely

related to the North Pacific Gyre Oscillation (NPGO).

Chapter 4 investigates the co-variability of SIC, SST, and sea-level pressure

(SLP) in the Arctic sector. Reemergence families are found to capture the SST–

SIC mechanism, and additionally suggest an atmospheric role in reemergence.

SLP patterns, resembling the Arctic Dipole Anomaly (DA) and Arctic Oscilla-

tion (AO), create large–scale teleconnections between different regions of sea-ice

variability, providing communication via their geostrophic winds. Moreover, these

SLP patterns suggest an SLP–SIC reemergence mechanism, via their winter-to-

winter regime persistence. In Chapter 5, a hierarchy of climate models is studied

to investigate the relative roles of the atmosphere and the ocean in producing sea-
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ice reemergence. In models with ocean-to-atmosphere coupling, reemergence mode

families display a pan-Arctic scale organization of SIC anomalies, related to SLP

teleconnection patterns. In Chapter 6, we investigate fall-to-spring reemergence,

finding that fall SIC anomalies reemerge the following spring due to persistent

sea-ice thickness (SIT) anomalies in the central Arctic.
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Chapter 1

Introduction

1.1 Contemporary climate science and the chang-

ing Arctic

Earth’s climate is a remarkably rich nonlinear dynamical system involving inter-

actions across spatial scales ranging from micrometers to thousands of kilometers

and time scales ranging from seconds to millennia. The climate system involves

coupling between the atmosphere, ocean, land, and cryosphere and incorporates

a wide breadth of physics, including rotating and stratified fluid dynamics, ther-

modynamics, solid mechanics, and planetary orbits. The dynamics of this system

are characterized by a wide-array of complex multiscale phenomena, such as mon-

soons and tropical oscillations, hurricanes, interannual and multidecadal variability

of the ocean, ice-sheet evolution, and geophysical turbulence.

Since the industrial age, an additional element has been introduced into the

climate system: human-produced carbon dioxide and other greenhouse gases from

the burning of fossil fuels. Carbon dioxide levels have risen from 278± 2 parts-per

1



million (ppm) in 1750 to 390.5± 0.2 ppm in 2011 (Stocker et al., 2013), generally

at an increasing rate (MacFarling Meure et al., 2006). Contemporaneous with

this carbon dioxide increase, increases in global mean temperature and other re-

lated variables have also been observed, leading many to suggest that the warming

and associated climate changes are human-induced. The Intergovernmental Panel

on Climate Change (IPCC) was established as a formal body in 1988, with the

objective of synthesizing current knowledge and identifying areas of uncertainty

in climate science. The IPCC produces periodic assessment reports, which sum-

marize observational data, modeling results, and theoretical understanding from

research groups around the world. The observational datasets presented in the

IPCC’s latest assessment report (AR5; Stocker et al., 2013) provide unequivocal

evidence of warming across a wide range of physical variables. Fig. 1.1 shows these

observations for eight different climate variables, each of which contain multiple

datasets. While any given dataset may have errors involving sparsity of observa-

tions in space and time (especially for earlier time periods), observation noise, and

errors associated with processing algorithms, the agreement across all variables and

datasets provides a striking message. The observations show increases in global

land-surface air temperature, sea-surface temperature, marine air temperature, sea

level, tropospheric air temperature, ocean heat content (upper 700m), and specific

humidity, and decreases in summer Arctic sea-ice extent, Northern hemisphere

snow cover, and glacier mass balance. The totality of evidence presented in this

latest assessment report led the IPCC to conclude that: “Human influence on the

climate system is clear. This is evident from the increasing greenhouse gas con-

centrations in the atmosphere, positive radiative forcing, observed warming, and

understanding of the climate system” (Stocker et al., 2013).

2
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As the oceans warm, the water itself expands. This expansion is one of the main drivers of the independently 
observed rise in sea levels over the past century. Melting of glaciers and ice sheets also contribute, as do changes in 
storage and usage of water on land.

A warmer world is also a moister one, because warmer air can hold more water vapour. Global analyses show that 
specific humidity, which measures the amount of water vapour in the atmosphere, has increased over both the land 
and the oceans.

The frozen parts of the planet—known collectively as the cryosphere—affect, and are affected by, local changes 
in temperature. The amount of ice contained in glaciers globally has been declining every year for more than 20 
years, and the lost mass contributes, in part, to the observed rise in sea level. Snow cover is sensitive to changes in 
temperature, particularly during the spring, when snow starts to melt. Spring snow cover has shrunk across the NH 
since the 1950s. Substantial losses in Arctic sea ice have been observed since satellite records began, particularly at 
the time of the mimimum extent, which occurs in September at the end of the annual melt season. By contrast, the 
increase in Antarctic sea ice has been smaller.

Individually, any single analysis might be unconvincing, but analysis of these different indicators and independent 
data sets has led many independent research groups to all reach the same conclusion. From the deep oceans to the 
top of the troposphere, the evidence of warmer air and oceans, of melting ice and rising seas all points unequivo-
cally to one thing: the world has warmed since the late 19th century (FAQ 2.1, Figure 2). 

FAQ 2.1, Figure 2 |  Multiple independent indicators of a changing global climate. Each line represents an independently derived estimate of change in the climate 
element. In each panel all data sets have been normalized to a common period of record. A full detailing of which source data sets go into which panel is given in the 
Supplementary Material 2.SM.5.

FAQ 2.1 (continued)
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Figure 1.1: Climate change signals as reported by the 2013 IPCC report. Figure
is modified from Stocker et al. (2013).
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Contemporary climate science blends observations, theory, and modeling and

depends crucially on the interplay between these approaches. The rise of computing

power has led to increased use of, and confidence in, numerical climate models.

Modern global climate models (GCMs) couple atmosphere, ocean, sea ice, and

land components, numerically solving the corresponding set of coupled partial

differential equations on a discrete grid. Typical grid spacing in a modern GCM is

roughly 100km horizontally with approximately 50 vertical levels in the ocean and

20 vertical levels in the atmosphere. The resolution of GCMs necessitates the use

of physical parameterizations to account for sub-grid scale processes, which cannot

be directly resolved by the model. Despite model errors associated with incomplete

physics, GCMs are quite effective at representing sufficiently coarse-grained fields.

For example, Fig. 1.2, modified from IPCC report AR5, demonstrates the ability

of GCMs to capture the observed changes of global temperature when forced by

appropriate greenhouse gas forcings. In particular, the models of the coupled

model intercomparison project (CMIP) agree well with temperature observations

when forced with both natural and human forcings, and clearly disagree when only

forced with natural forcings.

Climate change signals are not spatially uniform across the globe, owing to

heat transport from large-scale circulation and climate feedback mechanisms. The

Arctic stands out as a region that exhibits enhanced greenhouse-induced warming,

likely due to changes associated with the loss of sea ice. This enhanced warm-

ing in the Arctic has been termed Arctic amplification (Holland and Bitz, 2003;

Serreze and Francis, 2006; Screen and Simmonds, 2010). Since the beginning of

the satellite era in 1979, Arctic sea-ice has exhibited a precipitous decline in areal

extent (Serreze et al., 2007; Cavalieri and Parkinson, 2012; Stroeve et al., 2012).
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Figure 1.2: Climate response to natural and human forcings, as reported by the
2013 IPCC report. Figure is modified from Stocker et al. (2013).

This decline is observed over nearly all regions of the Arctic and for all months of

the year, highlighted by the trend of -14% per decade for September Arctic sea-ice

extent (Overland and Wang, 2013). There is also an observed thinning of Arctic

sea ice; however, this is based on observations that are sparse in time (Rothrock

et al., 1999; Kwok and Rothrock, 2009). Sea-ice thickness observations are based

primarily on submarine observations and satellite observations beginning in 2003.

Arctic warming and sea-ice loss act as self-reinforcing processes via the sea-

ice albedo feedback mechanism (Budyko, 1969; Curry et al., 1995), leading many

to speculate on the possibility of a “tipping point” for the Arctic climate system

(Lindsay and Zhang, 2005; Winton, 2006; Eisenman and Wettlaufer, 2009). Others
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have shown that while ice-free summer conditions are a likely future possibility,

the Arctic climate system does not exhibit hysteretic behavior, and recovery to

states with higher ice cover is possible over time-scales of a few years (Tietsche

et al., 2011; Serreze, 2011). Recently, there has also been a more controversial link

made between decreased Arctic sea ice and extreme weather in the mid-latitudes

(Francis and Vavrus, 2012; Screen and Simmonds, 2013; Barnes, 2013).

In addition to its impact on global climate, changes in Arctic sea ice influence

a number of other stakeholders, including northern communities, Arctic wildlife,

and industries that would benefit from the opening of new shipping routes in the

Arctic (Stephenson et al., 2011). The rapid changes in the Arctic have motivated

the creation of the Study of Environmental Arctic Change (SEARCH) Sea Ice

Outlook (SIO), which is the first large-scale model intercomparison of seasonal

Arctic sea-ice prediction skill. The SIO solicits forecasts for September Arctic sea-

ice extent from a wide-range of research groups, based on dynamical, statistical and

heuristic modeling approaches. The results of 309 individual contributions from

2008–2013 were summarized in the work of Stroeve et al. (2014), demonstrating

success in years when the observed ice extent was close to the long-term trend and

large errors in years that deviated significantly from the trend.

For longer timescale projections of Arctic sea ice, GCMs are the tool of choice.

GCM simulations of 21st-century climate show rapid loss of summer sea ice (Hol-

land et al., 2006b), with ice-free conditions emerging on average in the year 2070

(Overland and Wang, 2013). When compared to satellite observations, GCM sim-

ulations tend to underpredict the rate of sea-ice loss (Stroeve et al., 2007). This

underprediction could either be the result of (1) systematic model error or (2) the

fact that the observational record represents only a single realization of a com-
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plex chaotic system. The chaotic nature of nonlinear dynamical systems has been

well-known since the famous paper of Lorenz (1963). Recently, with advances in

computational power, the chaotic nature of the climate system has begun to be

studied in the context of GCM simulations. GCM ensembles, produced by repeat-

edly running the same model with slightly different initial conditions, display a

striking amount of internal variability, especially when considering regional spatial

scales (Deser et al., 2012a,b). This internal, or “natural”, variability of the climate

system imposes intrinsic limits on predictability, related to the manner in which

infinitesimal errors grow in the system. Natural variability also poses challenges in

attempting to separate a signal into a portion resulting from changes in external

forcing and a portion corresponding to internally generated variability.

In the context of Arctic sea ice, studies have attributed roughly half of the

observed trend in September sea-ice extent to anthropogenic forcing and the other

half to internal variability (Kay et al., 2011; Stroeve et al., 2012). The task of

disentangling the effects of external forcing, model error, and natural variability

is formidable and will remain a challenge in climate science in the years ahead.

A recent study by Swart et al. (2015) found that the spread in estimated sea-ice

trends within a single model was comparable to the spread amongst a multi-model

ensemble. This suggests that internal variability is of comparable importance to

errors due to model physics and highlights the importance of performing long

control integrations with fixed forcings. These long control integrations represent

a unique testbed for sampling the internal variability of a given model.

Improving model physics and parameterizations represents one path to improv-

ing Arctic sea-ice prediction. Another route to improved prediction is the system-

atic study of sea-ice predictability, which we define here as the degree to which
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accurate predictions of the Arctic climate system can be made. There has been

a recent proliferation of sea-ice predictability studies (Koenigk and Mikolajewicz,

2009; Holland et al., 2011; Blanchard-Wrigglesworth et al., 2011a,b; Chevallier and

Salas-Mélia, 2012; Holland et al., 2013; Tietsche et al., 2013; Day et al., 2014b; Gue-

mas et al., 2014; Germe et al., 2014; Tietsche et al., 2014; Blanchard-Wrigglesworth

and Bitz, 2014; Day et al., 2014a) and investigations focussed on seasonal sea-ice

forecasts (Msadek et al., 2014; Chevallier et al., 2013; Sigmond et al., 2013; Wang

et al., 2013; Schröder et al., 2014; Yuan et al., 2014). One promising avenue of this

predictability work is the identification of physically-based mechanisms that could

endow sea-ice with predictability. Earlier work has identified important roles of

the atmosphere and the ocean in setting patterns of sea-ice variability (Chapman

and Walsh, 1993; Fang and Wallace, 1994; Walsh et al., 1996; Deser et al., 2000,

2002; Bitz et al., 2005). Recent work has begun to place this knowledge in the

context of sea-ice predictability.

The work of Blanchard-Wrigglesworth et al. (2011a) introduced a phenomenon

termed sea-ice reemergence, which identified unexpected memory characteristics

in Arctic sea-ice area anomalies. Sea-ice reemergence is a lagged correlation phe-

nomenon that is observed in two forms: (1) spring sea-ice area anomalies tend to

recur the following fall, despite a loss of correlation over the intervening summer

months; and (2) fall sea-ice anomalies tend to recur the following spring, despite a

loss of correlation over the intervening winter months. Blanchard-Wrigglesworth

et al. (2011a) suggested that the spring-to-fall reemergence is the result of an

SST–sea-ice interaction in which spring (melt season) sea-ice concentration (SIC)

anomalies imprint anomalies of opposite sign in the surface ocean. These SST

anomalies persist over the summer months, and when the SIC grows southward
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in the fall (growth season) it interacts with the SST anomaly and reinherits its

spring anomaly. SST is unable to participate in the fall-to-spring reemergence, as

the regions where fall SIC anomalies occur become completely ice-covered over the

winter months. Blanchard-Wrigglesworth et al. (2011a) suggested that the fall-to-

spring reemergence occurred due to persistent sea-ice thickness (SIT) anomalies in

the central Arctic. These SIT anomalies allow SIC anomalies to reemerge when

the ice edge reaches a similar location the following spring. Sea-ice reemergence

was examined in five GCMs by Day et al. (2014b), who found reemergence signals

of varying strength across the five models. Day et al. (2014b) also corroborated the

mechanisms of Blanchard-Wrigglesworth et al. (2011a) by performing correlation

between SIC area anomalies and the spatially-varying SST and SIT anomaly fields.

Sea-ice reemergence represents a “predictability mechanism” for Arctic sea ice.

Many unanswered questions regarding sea-ice reemergence remain, including the

temporal and regional aspects of sea-ice reemergence, its relation to SIC, SST,

SLP, and SIT variability, detailed understanding of the mechanisms for spring-to-

fall and fall-to-spring reemergence, and the robustness of reemergence in simpler

models. The goal of this thesis is to gain a deeper understanding of these, and

related, questions. Next, we outline our research plan.

1.2 Research overview

The approach of this thesis is to investigate sea-ice “predictability mechanisms”

using novel techniques for data analysis of high-dimensional multivariate time-

series. We build upon the framework of nonlinear Laplacian spectral analysis

(NLSA; Giannakis et al., 2012; Giannakis and Majda, 2012c,a, 2013, 2015), a
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recently developed data analysis technique which is a nonlinear manifold gener-

alization of linear projection-based approaches. The original NLSA algorithm is

designed for analysis of a single scalar or vector-valued field. We seek a gener-

alization of this algorithm that has two key features: (1) it is independent of

the physical units of the multivariate input data and (2) it does not require any

pre-normalization of this data. We term this new approach coupled NLSA.

In Chapter 2, we present the data analysis methods that form the basis for cou-

pled NLSA. First, we introduce empirical orthogonal function (EOF) analysis, the

standard data analysis technique in atmosphere-ocean science applications. Next,

we introduce singular spectrum analysis (SSA; Broomhead and King, 1986; Vau-

tard and Ghil, 1989; Sauer et al., 1991; Ghil et al., 2002; Groth and Ghil, 2011),

which generalizes EOF analysis using the idea of time-lagged embedding. Subse-

quently, NLSA is introduced, which merges ideas from geometric data analysis and

SSA. Finally, we introduce the coupled NLSA algorithm, which will be used exten-

sively in the subsequent chapters. The work in Chapter 2 appeared previously as

“Reemergence Mechanisms for North Pacific Sea Ice Revealed through Nonlinear

Laplacian Spectral Analysis,” in the Journal of Climate, 27, pp 6265–6287, c©2014

AMS, in a paper by Mitchell Bushuk, Dimitrios Giannakis, and Andrew Majda.

In Chapter 3, we investigate the co-variability of SIC and SST in the North Pa-

cific sector using coupled NLSA. We study the phenomenon of sea-ice reemergence

in the North Pacific using coupled NLSA modes, finding that low-dimensional mode

families form an efficient representation of sea-ice reemergence. In both compre-

hensive climate models and observations, these “reemergence families” reflect an

SST-based reemergence mechanism, in which persistent summer SST anomalies

store the memory of earlier SIC anomalies. These reemergence families are found
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to be closely connected to the North Pacific Gyre Oscillation (NPGO, Di Lorenzo

et al., 2008) pattern of SST variability. A second set of reemergence families, re-

lated to the Pacific Decadal Oscillation (PDO, Mantua and Hare, 2002), is found

to capture North Pacific SST reemergence. The work presented in Chapter 3 ap-

peared previously as “Reemergence Mechanisms for North Pacific Sea Ice Revealed

through Nonlinear Laplacian Spectral Analysis,” in the Journal of Climate, 27, pp

6265–6287, c©2014 AMS, in a paper by Mitchell Bushuk, Dimitrios Giannakis, and

Andrew Majda.

In Chapter 4, we extend our study of reemergence by considering an Arctic

domain and adding SLP into our coupled analysis. This chapter focuses on the

regional and temporal aspects of sea-ice reemergence, and the interplay between

SIC, SST, and SLP. In both models and observations, we identify significant re-

gional differences and temporal variability in the strength of reemergence. We find

that reemergence families of NLSA modes are able to efficiently capture the SST–

SIC reemergence mechanism identified in Chapter 3. These reemergence families

display clear SIC phase relationships between geographically disconnected regions.

The SLP patterns of these families provide an explanation for the corresponding

SIC spatial patterns, as they provide a pan-Arctic scale organization of SIC anoma-

lies via their geostrophic winds. The SLP patterns also suggest another plausible

reemergence mechanism, via their winter-to-winter regime persistence. The con-

tent presented in Chapter 4 appeared previously as “Arctic Sea-Ice Reemergence:

The Role of Large-Scale Oceanic and Atmospheric Variability,” in the Journal of

Climate, in press, c©2015 AMS, in a paper by Mitchell Bushuk, Dimitrios Gian-

nakis, and Andrew Majda.

In Chapter 5, we further explore the results of Chapter 4, by studying a hi-
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erarchy of models with active sea-ice components, but varying atmospheric and

oceanic formulation. This hierarchy is designed to investigate the relative role

of the atmosphere and the ocean in producing sea-ice reemergence. We find that

dynamical feedback from the ocean to the atmosphere is essential in creating large-

scale organized patterns of SIC–SLP co-variability. We also find that the ocean

provides the key source of memory for reemergence, and the atmosphere provides

the key source of variability. The work presented in Chapter 5 has been submitted

to Geophysical Research Letters, in a manuscript entitled “Sea-Ice Reemergence in

a Model Hierarchy,” in a paper by Mitchell Bushuk and Dimitrios Giannakis.

In Chapter 6, we turn our focus to a study of the fall-to-spring reemergence by

adding SIT into our coupled analysis. We find that a low-dimensional reemergence

family of NLSA modes is able to efficiently capture an SIT–SIC mechanism, in

which winter SIT anomalies store the memory of fall SIC anomalies. Using metrics

for reemergence, we study the phase relationship of the SIT mechanism, and other

reemergence mechanisms, with respect to the seasonal cycle.

Finally, we conclude in Chapter 7 by summarizing the main findings of this

work and presenting a number of related problems which will form the basis for

future work.
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Chapter 2

Data Analysis Methods

2.1 Introduction

In this chapter we introduce a novel technique for unit-independent analysis of

high-dimensional multivariate datasets. The approach, coupled nonlinear Lapla-

cian spectral analysis (NLSA), generalizes a number of data analysis techniques,

and we will incrementally assemble the building blocks of the method in this chap-

ter. We begin by introducing empirical orthogonal function (EOF) analysis, the

standard data analysis technique in atmosphere-ocean science applications. Next,

we present singular spectrum analysis (SSA), a generalization of EOF analysis that

provides superior time-scale separation and the ability to capture spatiotemporal

patterns in data. Subsequently, we introduce the NLSA method, a recently devel-

oped nonlinear data analysis technique, which merges the concepts of time-lagged

embedding from SSA and diffusion maps (Belkin and Niyogi, 2003; Coifman and

Lafon, 2006) from the machine learning community. Finally, we present the cou-

pled NLSA method, which is newly developed in this work, and is a multivariate
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extension of NLSA.

2.2 Empirical Orthogonal Function Analysis

The most widely-used tool for data analysis and dimensionality reduction in

atmosphere-ocean science is empirical orthogonal function (EOF) analysis (North

et al., 1982; von Storch and Zwiers, 1999). EOF analysis seeks to decompose

an input signal into a set of spatial patterns called EOFs and an associated set

of temporal patterns called principal components (PCs). The EOFs represent the

dominant spatial patterns of variability of the input signal, and the PCs encode the

amplitude and sign of these patterns at each point in time. These “modes of vari-

ability” are ordered in terms of decreasing explained variance. In other contexts,

EOF analysis is commonly referred to as Principal Component Analysis (PCA),

the Karhunen-Loève transform (KLT), and the Proper Orthogonal Decomposition

(POD).

EOF analysis is popular for a number of reasons: (1) it is “variance greedy”,

seeking patterns that capture the maximal variance of the input signal; (2) the

spatial patterns identified often have a natural physical interpretation; and (3) the

algorithm is simple and easy to implement. Many well-known patterns of climate

variability are defined (or at least can be defined) via EOF analysis, including

the North Atlantic Oscillation (NAO; Ambaum et al., 2001), the Pacific Decadal

Oscillation (PDO; Mantua et al., 1997; Mantua and Hare, 2002), the Arctic Os-

cillation (AO; Thompson and Wallace, 1998), the North Pacific Gyre Oscillation

(NPGO; Di Lorenzo et al., 2008), the Southern Annular Mode (SAM; Thompson

and Wallace, 2000), and the El Niño Southern Oscillation (ENSO; Zhang et al.,
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1997).

Next, we describe the operational implementation of EOF analysis. Suppose

that we have a signal y(t, r), where r is a position vector in the space in which

our observable y is defined (for the geophysical applications in this work, this is a

position on the 2-D surface of the earth). Suppose that we have an s-sample time

series of y, which is sampled over d spatial gridpoints. Let the positions of these

gridpoints be given by ri, where i ∈ {1, 2, . . . , d}. Also, assume that this signal is

sampled uniformly at time step δt, where tj = t1 + (j − 1)δt and j ∈ {1, 2, . . . , s}.

First, as explained below, the data at each gridpoint is scaled by an appropriate

area weighting factor
√
wi, where wi represents the area occupied by the ith spatial

gridpoint. For example, if this data was defined on a regular latitude-longitude

grid, the weighting factors would be
√

cos(φ), where φ is the latitude. We define

a new area-weighted timeseries x(t, r), where x(t, ri) = y(t, ri)
√
wi, ∀i. We use the

notation xj ∈ Rd to indicate a sample taken at time tj over the d spatial gridpoints.

Next, we form the d× s data matrix X,

X =

[
x1 x2 . . . xs

]
.

Entry Xij in this matrix indicates the value of x at spatial gridpoint i and time

tj. Note that the data in this matrix has been pre-processed by subtracting the

time mean from each spatial gridpoint. In other words, each row in X has mean

zero. Next, we compute the temporal covariance function. The continuous version

of this function is given by

C(t, t′) =

∫
y(t, r)y(t′, r)dr,
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where r is a position vector in the space in which our observable y(t, r) is defined.

Our observed signal yj is an approximation to the continuous signal, sampled

over d spatial gridpoints at time steps tj. We would like to use this discrete data to

compute an approximation to the temporal covariance function. Let wi represent

the area occupied by the ith gridpoint. Then, a discrete approximation to the

temporal covariance function is given by:

C(tj, tj′) =
d∑

i=1

y(tj, ri)y(tj′ , ri)wi =
d∑

i=1

x(tj, ri)x(tj′ , ri) = xTj xj′ .

Therefore, Euclidean inner products between area-weighted samples provide the

temporal covariance between these samples. This is the reason that we use the area-

weighted timeseries x. Next, we form the temporal covariance matrix C = XTX

and solve the eigenvalue problem

Cvk = λkvk.

C is a positive definite symmetric matrix, hence it is unitarily diagonalizable, and

{vk} are an orthonormal set of vectors in Rs. These are the principal components,

or right singular vectors. We define the singular values σk as σk =
√
λk, and define

the left singular vectors as:

uk =
Xvk
σk

.

The {uk} are an orthonormal set of vectors with respect to the Euclidean inner

product. These vectors define spatial patterns in Rd. Upon division by the area-

weighting factors
√
wi, these are the EOFs. Note that if σk = 0, we simply choose
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uk as a unit vector that is orthogonal to the rest of the left singular vectors.

This decomposition of X is referred to as the Singular Value Decomposition

(SVD), and can be written in the following matrix product form:

X =




↑ ↑ ↑

u1 u2 · · · uD

↓ ↓ ↓







σ1 0 · · · 0

0 σ2 · · · 0

..
. . . . ..
.

0 · · · 0 σD







← v1 →

← v2 →

..
.

← vD →




,

where D = min(d, s). This decomposition, where D = min(d, s) and the matrix

of singular values is square, is commonly referred to as the reduced SVD. It is also

illuminating to write the decomposition as a sum of rank-one matrices:

X =
D∑

k=1

σkukv
T
k .

Here, each mode is represented by a rank one matrix. One can produce a reduced

representation of the original data by choosing a subspace of modes, and summing

up the appropriate rank one matrices. This concept of dimensionality reduction

makes EOF analysis extremely powerful in explaining complex high-dimensional

signals.

2.3 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) was introduced by Broomhead and King

(1986) as a data analysis technique for dynamical systems with complex spatiotem-

poral data, and has been studied extensively since (Vautard and Ghil, 1989; Sauer

et al., 1991; Ghil et al., 2002; Groth and Ghil, 2011). SSA is based upon the
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idea of time-lagged embedding or “method of delays” introduced in the work of

Takens (1981). Like EOF analysis, SSA seeks a decomposition of the input signal

into modes of variability. However, instead of seeking spatial patterns (EOFs) and

associated time series (PCs), SSA seeks spatiotemporal patterns and associated

time series. The first step of the SSA algorithm is the choice of a parameter q,

which specifies the time window ∆t = qδt that makes up each spatiotemporal

pattern. As earlier, suppose that we have an area-weighted signal xj ∈ Rd, where

j ∈ {1, 2, . . . , s}. First, we embed our signal into the higher-dimensional space

Rqd, under the delay-coordinate mapping

xj 7→ Xj = (xj, xj−1, ..., xj−(q−1)).

Each of these vectors, which we called time-lag embedded vectors, consists of q

snapshots of our input signal. Next, we assemble the qd× s− q + 1 lag-embedded

data matrix, X, with these vectors placed along its columns:

X =

[
Xq Xq+1 . . . Xs

]
.

It is illuminating to also write the lag-embedded data matrix explicitly in terms

of the input data, which illustrates the degree of data repetition in this matrix:

X =




xq xq+1 xq+2 . . . xs−2 xs−1 xs

xq−1 xq xq+1 . . . xs−3 xs−2 xs−1

xq−2 xq−1 xq . . . xs−4 xs−3 xs−2

..
.

..
.

..
.

..
.

..
.

..
.

x1 x2 x3 . . . xs−q−1 xs−q xs−q+1




.
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Note that the subdiagonals of X generically contain q copies of each data sample,

except for the first q−1 and final q−1 samples in the time series. Next, analogous

to EOF analysis, we compute the SVD of X, and write:

X =
D∑

k=1

σkukv
T
k ,

where D = min(dq, s − q + 1), uk ∈ Rqd, σk ∈ R>0, and vk ∈ Rs−q+1. Here, {uk}

are q-snapshot spatiotemporal patterns and {vk} are the principal components.

Upon division by the area-weighting factors
√
wi, the {uk} are known as extended

empirical orthogonal functions (EEOFs). SSA is also commonly referred to EEOF

analysis in the atmosphere-ocean science literature. Note that, in the case of q = 1,

SSA reduces to EOF analysis.

Each of the Xk = σkukv
T
k is a rank-one matrix that describes the temporal

evolution of the mode uk in lagged embedding space Rqd. Often, we are interested

in the evolution of this mode in physical space Rd. To project back to physical

space, we average along the appropriate subdiagonals (the diagonals with repeated

entries; see lag-embedded data matrix above) and obtain a representation of xj for

all j ∈ {1, 2, . . . , s}, which we call x̃kj . Specifically, let us denote the jth column of

Xk by:

Xk
j =




x̂kj,0

x̂kj,1

..
.

x̂kj,q−1



.

In this vector, x̂kj,0 corresponds to xj, x̂
k
j,1 corresponds to xj−1, et cetera. Ignoring

19



the first and last q−1 samples of the timeseries, there are q entries that correspond

to xj, specifically, x̂kj,0, x̂
k
j+1,1, ..., x̂

k
j+q−1,q−1. To obtain x̃kj , we simply average these:

x̃kj =
1

q

q−1∑

l=0

x̂kj+l,l.

We call x̃kj the reconstructed data. Upon division by the area-weighting factors

√
wi, this gives a spatial reconstruction in the physical units of the input signal.

This reconstructed data can be produced for a single mode, or for a mode subspace

of the user’s choosing. The user can either choose not to reconstruct the first and

last q − 1 samples of the timeseries (this is the approach we employ), or do the

reconstruction for these samples by averaging the appropriate subdiagional, which

will contain less than q entries that correspond to xj.

2.4 Nonlinear Laplacian Spectral Analysis

The original nonlinear Laplacian spectral analysis (NLSA) algorithm, intro-

duced in a series of papers in 2012 and 2013, is a nonlinear manifold generalization

of SSA (Giannakis et al., 2012; Giannakis and Majda, 2012c,a, 2013, 2015). NLSA

combines the concept of time-lagged embedding from SSA with Laplacian eigen-

maps and diffusion maps, which are a class of nonlinear dimensionality reduction

techniques from the machine learning and harmonic analysis community (Belkin

and Niyogi, 2001, 2003, 2004; Coifman and Lafon, 2006; Jones et al., 2008). There

is also another recently developed related approach, diffusion-mapped delay coor-

dinates (DMDC), that merges time-lagged embedding and diffusion maps (Berry

et al., 2013). As with SSA, NLSA operates on the time-lagged embedded data,
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and also uses an SVD to extract spatiotemporal and temporal modes of variability

from the data. The difference between the two algorithms is that NLSA adds an

additional filtering step, in which the data is projected onto a natural set of tem-

poral patterns that are derived via intrinsic similarity relationships of the data.

Below, we present the steps of the NLSA algorithm.

Again, consider an area-weighted signal x(t, r) sampled over d spatial grid-

points, with s time samples. Suppose the signal is sampled uniformly at time step

δt. Following the techniques of SSA, we choose some time-lagged embedding win-

dow ∆t = qδt, and we embed our data in the higher-dimensional space H = Rdq

under the delay-coordinate mapping

xj 7→ Xj = (xj, xj−1, ..., xj−(q−1)).

Next, we compute the phase space velocity, ξi, viz.

ξi = Xi −Xi−1.

These vectors have a natural geometric interpretation as the vector field on the

data manifold driving the dynamics (Giannakis, 2015).

NLSA algorithms utilize a set of natural orthonormal basis functions on the

nonlinear data manifold to describe temporal patterns analogous to PCs. These

basis functions are eigenfunctions of a graph Laplacian operator computed from

a pairwise kernel function K on the data. The graph Laplacian eigenfunctions

form a complete basis on the data manifold and are ordered in terms of increasing

eigenvalue. These eigenvalues can be interpreted as squared “wavenumbers” on

the data manifold (Giannakis and Majda, 2015). Performing a spectral truncation
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in terms of the leading l eigenfunctions acts as a filter for the data, which removes

high wavenumber energy on the data manifold, while retaining the energy at low

wavenumbers. This truncation penalizes highly oscillatory features on the data

manifold, and emphasizes slowly varying ones.

We next introduce the pairwise kernel function K, which measures the simi-

larity between different states in lagged embedding space. K is a Gaussian kernel

and can be thought of as a local version of the temporal covariance matrix, which

decays to zero outside of a given neighborhood. Kij is defined as:

Kij = exp

(
−‖Xi −Xj‖2

ε‖ξi‖‖ξj‖

)
.

Here, ε is a parameter that controls the locality of the Gaussian kernel, and ‖ · ‖

is the standard Euclidean norm. For typical climate datasets, ε is order 1, and is

smaller for datasets with more time samples. Note that ε is order 1 due to the

normalization by the phase velocities in the kernel. Heuristically, Kij represents

the likelihood of a random walker on the data manifold transitioning from state

i to state j. Note that this random walk is introduced solely for the purpose of

evaluating orthonormal basis functions on the discrete data manifold. In particu-

lar, the random walk has no relation to the actual dynamics of the system. This

kernel depends on the phase velocity magnitude ‖ξi‖ in the sense that states with a

large (small) velocity magnitude have appreciable transition probability to a larger

(smaller) number of states, due to the Gaussian having a larger (smaller) width.

As a result, the algorithm has enhanced skill in capturing transitory events char-

acterized by large ‖ξi‖ (Giannakis and Majda, 2012c). Using the graph Laplacian

approach of Coifman and Lafon (2006), we compute the Laplacian matrix L via
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the following steps:

Qi =

s−q∑

j=1

Kij,

K̃ij =
Kij

Qα
i Q

α
j

,

Di =

s−q∑

j=1

K̃ij,

Pij =
K̃ij

Di

,

L = I − P,

where P is a transition matrix, I is the identity matrix, and α is a normalization

parameter. Typical choices for this class of algorithms is α = 0 and α = 1.

Next, we solve the eigenvalue problem

Lφi = λφi,

and recover a set of discrete Laplacian eigenfunctions {φ1, φ2, . . . , φs−q} defined on

the data manifold. The transition matrix P also defines an invariant measure ~µ

on the discrete data manifold, given by

~µP = ~µ,

where µi represents the volume occupied by the sample Xi on the data manifold.

Let X : Rs−q 7→ Rqd be the lagged-embedded data matrix for our s-sample data
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set:

X =

[
Xq+1 Xq+2 . . . Xs

]
.

Note that this matrix begins with Xq+1 rather than Xq, because the first sample

was used in the computation of the phase velocities. Projecting X onto the leading

l Laplacian eigenfunctions, we construct a linear map Al : Rl 7→ Rqd, given by

Al = XµΦ.

In the above, Φ is a matrix whose columns are the leading l Laplacian eigenfunc-

tions, and µ is a diagonal matrix with entries ~µ along the diagonal. SVD of the

operator Al yields sets of spatiotemporal modes uk of dimension qd, analogous

to extended EOFs, and temporal modes vk(t) of length s − q, analogous to PCs.

Projecting the modes from lagged embedding space to physical space using the

approach from SSA, we obtain reconstructed data ũk(t) for the original field.

An important aspect of the NLSA algorithm is the selection of the temporal

space dimension l. Ultimately, this is a choice that needs to made by the user

of the algorithm. However this choice can be guided by a spectral entropy crite-

rion (Giannakis and Majda, 2012a), which allows the user to systematically track

changes in the singular value spectrum with changes in l. At large values of l, the

singular values tend to saturate at a certain value. For small l, crucial features

of the dataset are truncated. The spectral entropy criterion provides guidance to

choosing a truncation level between these two limits.

First, given an l, we define a probability distribution pl, with entries plk given
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by

plk =
(σlk)

2

l∑

k=1

(σlk)
2

,

where σlk is the kth singular value of Al. The plk values represent the variance

distribution amongst the l modes. Now, we consider the values σ̂lk, given by σ̂lk = σlk

for k 6 l − 1 and σ̂lk = σlk−1 for k = l. We define a probability distribution πl,

given by

πlk =
(σ̂lk)

2

l∑

k=1

(σ̂lk)
2

.

Next, we compute the relative entropy, Dl, between these two distributions:

Dl =
l∑

k=1

plklog
plk
πlk
.

Dl exhibits a sequence of spikes at small to moderate values of l, eventually settling

to smaller values (see Figure 1 of Chapter 3, ahead). The practical criterion used

for truncation is to choose a value of l at which Dl begins to settle to these smaller

values.

25



2.5 Coupled Nonlinear Laplacian Spectral Anal-

ysis

The original NLSA algorithm is designed for analysis of a high-dimensional

time series from a single scalar or vector-valued variable. Here, we seek to modify

the NLSA algorithm to allow for an analysis of multiple variables with, in general,

different physical units. For example, the applications ahead will focus on the

coupled variability of sea-ice concentration (measured in %) and sea-surface tem-

perature (measured in K). Studying the coupled variability of these fields requires

a method for normalizing each dataset. The coupled NLSA approach provides a

natural method for “non-dimensionalizing” these datasets, which does not require

any ad-hoc choices of normalization by the user.

Let x1(t, r) and x2(t, r) be two area-weighted signals, each sampled uniformly

at time step δt. Let x1(t, r) be sampled over d1 gridpoints and x2(t, r) be sampled

over d2 gridpoints. Following the techniques of SSA, we choose some time-lagged

embedding window ∆t = qδt, and we embed our data in the higher-dimensional

spaces Rd1q and Rd2q under the delay-coordinate mappings

x1j 7→ X1
j = (x1j , x

1
j−1, ..., x

1
j−(q−1)),

x2j 7→ X2
j = (x2j , x

2
j−1, ..., x

2
j−(q−1)).

Next, for each variable we compute the phase space velocities, ξ1i and ξ2i , viz.

ξ1i = X1
i −X1

i−1,

ξ2i = X2
i −X2

i−1.

26



Again, we seek to compute a pairwise kernel function K that measures similarity

between states. In the coupled NLSA approach introduced here, this function is

constructed using the idea of scale invariance. In particular, we compute the Gaus-

sian kernel values Kij so that physical variables are made dimensionless, allowing

for direct comparison of different variables:

Kij = exp

(
−‖X

1
i −X1

j ‖2
ε‖ξ1i ‖‖ξ1j ‖

− ‖X
2
i −X2

j ‖2
ε‖ξ2i ‖‖ξ2j ‖

)
.

As before, ε is a parameter that controls the locality of the Gaussian kernel, and

‖ · ‖ is the standard Euclidean norm. The phase velocities serve two key roles

in this kernel: (1) as before, they provide a dynamical tuning of the kernel, em-

phasizing highly transitory states, and (2) division by the phase velocities non-

dimensionalizes the data, allowing for a natural comparison between X1 and X2.

The coupled NLSA kernel is also constructed to emphasize the co-variability of the

two input fields. The product form of this kernel implies that a large value of Kij

requires a high degree of similarity between both X1
i and X1

j and X2
i and X2

j . If

one of the fields does not have high similarity the value of Kij will be significantly

diminished.

Using the kernel values, we use the same approach as the NLSA algorithm to

compute the Laplacian matrix L, solve the eigenvalue problem Lφi = λφi, and

recover a set of discrete Laplacian eigenfunctions {φ1, φ2, . . . , φs−q}.

Next, we compute spatiotemporal and temporal patterns for each of the input

fields. Let X1 : Rs−q 7→ Rqd1 and X2 : Rs−q 7→ Rqd2 be the data matrices for our
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two s-sample data sets:

X1 =

[
X1
q+1 X1

q+2 . . . X1
s

]
,

X2 =

[
X2
q+1 X2

q+2 . . . X2
s

]
.

Projecting X1 and X2 onto the leading l Laplacian eigenfunctions, we construct

linear maps A1
l : Rl 7→ Rqd1 and A2

l : Rl 7→ Rqd2 , given by

A1
l = X1µΦ, A2

l = X2µΦ.

In the above, Φ is a matrix whose columns are the leading l Laplacian eigenfunc-

tions, and µ is a diagonal matrix with entries ~µ along the diagonal. As in the case of

univariate NLSA, our choice of l is guided by a spectral entropy criterion. Singular

value decomposition (SVD) of the operators A1
l and A2

l yields sets of spatiotem-

poral modes {u1k} and {u2k} of dimension qd1 and qd2, respectively, analogous to

extended EOFs, and corresponding sets of length l vectors, {V 1
k } and {V 2

k }. These

length l vectors are the expansion coefficients in eigenfunction basis. Expanding

using the first l eigenfunctions, we recover a set of temporal modes {v1k} and {v2k}

of length s− q, where v1k = ΦlV
1
k and v2k = ΦlV

2
k . These modes, indexed by k, are

ordered by decreasing singular value. Forming products σ1
ku

1
k(v

1
k)
T and σ2

ku
2
k(v

2
k)
T

and projecting from lagged embedding space to physical space using the standard

approach from SSA, we obtain reconstructed fields ũ1k(t) and ũ2k(t).

It should be noted that, while the SVD is performed on each operator individ-

ually, the resulting spatiotemporal patterns {u1k} and {u2k}, and principal compo-

nents {v1k} and {v2k}, are inherently coupled. This is because these operators are
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constructed using the same l-dimensional set of eigenfunctions, which have been

computed using the full multivariate dataset. Note that the variables used to con-

struct the eigenfunctions do not necessarily need to coincide with the variables for

which we compute the Al operators. For example, we can use the eigenfunctions

computed using X1 and X2 to filter any other variable of interest in our system.

Another natural possibility for performing coupled NLSA is to perform an

initial normalization of each physical variable to unit variance, and subsequently

perform the standard NLSA algorithm on the concatenated dataset. A problem

with this approach is that we artificially impose the variance ratio of the two

variables, without incorporating any information about their relative variabilities.

An appealing feature of the coupled approach described above is that the variance

ratio between variables is automatically chosen by the algorithm in a dynamically

motivated manner. We term the approach outlined in this section “phase velocity

normalization” and the normalization to unit variance “variance normalization.”

We will return to these issues in section 3a of Chapter 3. Another appealing aspect

of the algorithm above is that it can be naturally generalized from two variables

to many variables.
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Chapter 3

Reemergence Mechanisms for

North Pacific Sea Ice Revealed

through Nonlinear Laplacian

Spectral Analysis

3.1 Introduction

In this chapter, we utilize the coupled nonlinear Laplacian spectral analysis

(NLSA) technique to investigate the coupled variability of sea ice and sea-surface

temperature (SST) in the North Pacific Ocean. The dominant regions of North

Pacific sea-ice variability are the Bering Sea and the Sea of Okhotsk. Empirical

orthogonal function (EOF) analysis of North Pacific sea-ice observational data

shows a leading mode which is a sea-ice dipole between the Okhotsk and Bering

seas, and a second mode with spatially uniform ice changes over the domain (Deser
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et al., 2000; Liu et al., 2007). Other authors have also found evidence of a Bering-

Okhotsk dipole (Cavalieri and Parkinson, 1987; Fang and Wallace, 1994).

The primary hypothesis from earlier work on North Pacific sea ice is that at-

mospheric patterns such as the Aleutian low and the Siberian high drive sea ice

variability (Parkinson, 1990; Cavalieri and Parkinson, 1987; Sasaki and Minobe,

2006). The study of Blanchard-Wrigglesworth et al. (2011a), hereafter BW, sug-

gests that the ocean may also play an important role in sea-ice variability. BW

found that Arctic sea ice has “memory”, in which anomalies of a certain sign in

the melt season (spring) tend to produce anomalies of the same sign in the growth

season (fall). Additionally, they found that the intervening summer sea-ice cover

was not strongly correlated with the spring anomalies. This phenomenon, termed

sea-ice reemergence, was observed in the fall-spring variety described above, as well

as a summer-summer reemergence. BW propose a mechanism for the spring-fall

reemergence in which spring sea-ice anomalies induce an SST anomaly of oppo-

site sign, which persists over the summer months. When the ice edge returns to

this spatial location in the fall, the SST anomaly reproduces a sea-ice anomaly

of the same sign as the spring. The phenomenon of reemergence has also been

observed in North Pacific Ocean data (Alexander et al., 1999), in the form of a

winter-to-winter SST reemergence.

In this work, we utilize the coupled NLSA technique (Chapter 2), which is a

multivariate generalization of the original NLSA algorithm (Giannakis and Majda,

2012c,a, 2013). Given a time series of high-dimensional data, NLSA yields a set

of spatiotemporal modes, analogous to extended EOFs, and a corresponding set

of temporal patterns, analogous to principal components (PCs). In applications

involving North Pacific SST from climate models (Giannakis and Majda, 2012a),
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these include intermittent type modes not found in singular spectrum analysis

(SSA) that carry low variance but are important as predictor variables in regression

models (Giannakis and Majda, 2012b).

The coupled NLSA algorithm provides a unit-independent approach for analysis

of multivariate datasets. Here, we investigate the phenomenon of sea-ice reemer-

gence using the spatiotemporal modes of variability extracted through coupled

NLSA of sea-ice concentration and SST from a 900-yr control integration of the

Community Climate System Model version 3 (CCSM3, Collins et al., 2006), and in

34 years of sea ice and SST satellite observations from the Met Office Hadley Cen-

ter Sea Ice and Sea Surface Temperature (HadISST, Rayner et al., 2003) dataset.

We find that the sea-ice reemergence mechanism suggested by BW can be repro-

duced in both model output and observations using low-dimensional families of

NLSA modes, with the intermittent modes playing a crucial role in this mecha-

nism. Moreover, we find that the reemergence of correlation, in both sea ice and

SST, is significantly strengthened by conditioning on certain low-frequency modes

being active. These low-frequency modes reflect the North Pacific SST variability

of the North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al., 2008) and the

Pacific Decadal Oscillation (PDO, Mantua and Hare, 2002). We find that the

NPGO is related to the sea-ice reemergence of BW, while the PDO is related to

SST reemergence (Alexander et al., 1999).

The plan of this chapter is as follows. In section 2, we describe the CCSM3

and HadISST datasets. In section 3, we describe modes of variability captured by

coupled NLSA when applied to North Pacific sea ice and SST from CCSM3. In

section 4, we find reduced subsets of NLSA modes that are able to reproduce the

lagged correlation structure of BW, and we provide a mechanism for the observed
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sea-ice memory. We also investigate SST reemergence. In section 5, we compare

the results from CCSM3 to observations, by performing similar analyses on the

HadISST dataset. We conclude in section 6. Movies illustrating the dynamic

evolution of modes are available as online supplementary material.

3.2 Dataset description

3.2.1 CCSM3 model output

This chapter analyzes model output from a 900-yr equilibrated control integra-

tion of CCSM3 (Collins et al., 2006). We use CCSM3 monthly averaged sea-ice

concentration and SST data, which come from the Community Sea Ice Model

(CSIM, Holland et al., 2006a) and the Parallel Ocean Program (POP, Smith and

Gent, 2004), respectively. The model uses a T42 spectral truncation for the atmo-

spheric grid (roughly 2.9◦×2.9◦), and the ocean and sea ice variables are defined on

the same grid, of 1◦ nominal resolution. This chapter focuses on the North Pacific

sector of the ocean, which we define as the region 120◦E–110◦W and 20◦N–65◦N

(Teng and Branstator, 2011). Note that the seasonal cycle has not been removed

from this dataset.

Sea-ice concentration is only defined for the northern part of this domain, thus

we have d1 = 3750 sea ice spatial gridpoints, and d2 = 6671 SST spatial gridpoints.

Using an embedding window of q = 24 (Giannakis and Majda, 2012c), this yields

lagged embedding dimensions of qd1 = 90,000 and qd2 = 160,104. The value of

q = 24 months was used as the time lag because the resulting embedding window

is longer than the seasonal cycle, which is a primary source of non-Markovianity

in this dataset. A number of q values ∈ [1, 48] were tested, including q’s relatively
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prime to 12. It was found that the results were qualitatively similar for sufficiently

large q, i.e. q > 12, and sensitive to q for q < 12 (see also Giannakis and Majda,

2013).

3.2.2 Observational data

We also study the Met Office Hadley Center Sea Ice and Sea Surface Tempera-

ture (HadISST) dataset (Rayner et al., 2003), which consists of monthly averaged

sea ice and SST data on a 1◦ latitude-longitude grid. We use the satellite era

data from January 1979-August 2013. Note that all ice-covered gridpoints in the

HadISST dataset were assigned an SST value of −1.8◦C, the freezing point of salt

water at a salinity of 35 parts per thousand. Moreover, the trend in the dataset

was removed by computing a long-term linear trend for each month of the year,

and removing the respective linear trend from each month.

3.3 Coupled sea ice-SST spatiotemporal modes

of variability in CCSM3

We apply the coupled NLSA algorithm described in Chapter 2 to the CCSM3

sea ice and SST datasets, using an embedding window of ∆t = 24 months, and

choosing the parameter ε, which controls the locality of the Gaussian kernel, as

ε = 1.4. We include a discussion of the of the robustness of results with respect to

changes in ε in section 4a. Note that the time mean at each gridpoint has been sub-

tracted from the dataset, but the seasonal cycle has not been subtracted. Utilizing

the spectral entropy criterion outlined in Giannakis and Majda (2012a, 2013), we

choose a truncation level of l = 22, and express the lagged embedding matrices
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X ICE and XSST in the basis of the leading 22 Laplacian eigenfunctions, yielding

the operators AICE
l and ASST

l . Singular value decomposition of AICE
l produces a

set of l temporal patterns, vICE
k , of length s − q, analogous to PCs and l corre-

sponding spatiotemporal patterns, uICE
k , of dimension qd1, analogous to extended

EOFs. Similarly, SVD of ASST
l produces temporal patterns, vSSTk , and correspond-

ing spatiotemporal patterns uSSTk , of dimension qd2. Each variable has its own set

of principal components, but we find that each sea ice PC is strongly correlated

with a particular SST PC. Therefore, it is natural to consider the corresponding

spatiotemporal patterns as a pattern of coupled SST-sea ice variability.

Figure 3.1a shows the singular values of the operators AICE
l and ASST

l using

the phase velocity normalization approach outlined in Chapter 2 and the variance

normalization approach mentioned at the end of Chapter 2. Also shown are the

singular values from SSA performed on the unit variance normalized dataset. Note

that the SST singular values decay much more rapidly than the sea-ice singular

values, indicating that the SST signal has more variability stored in its leading

modes than the sea-ice signal.

Figure 3.1b shows a plot of the normalized relative entropy vs truncation level

l, computed using the approach of Giannakis and Majda (2012a, 2013). As l→∞,

and in the case of uniform measure ~µ and phase velocity ξ, the results of NLSA

converge to SSA. The spectral entropy criterion provides a heuristic guideline for

choosing l, designed to select l large-enough to reproduce the crucial features of

the data, but small-enough to filter out highly oscillatory features of the data

(Giannakis and Majda, 2015). The latter would be present in the SSA limit men-

tioned above. In the normalized relative entropy plot, spikes represent the addition

of qualitatively new features to the data, and suggest possible truncation levels.
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Figure 3.1: (a) Singular values from coupled NLSA with phase velocity normal-
ization (black and red markers show ice and SST singular values, respectively),
variance normalization (cyan markers), and SSA (blue line). The singular values
have been normalized so that σ1 = 1. Low-frequency modes are indicated by “©”,
periodic modes by “×”, and intermittent modes by “�”. (b) Normalized relative
entropy for AICE

l and ASST
l vs truncation level l. Spikes in the relative entropy

curve indicate possible candidates for the choice of truncation level.
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Here, seeking a parsimonious description of the data, we select a truncation level

of l = 22.

3.3.1 Temporal modes and sea ice-SST coupling

Coupled NLSA yields three distinct families of of modes: periodic, low-frequency,

and intermittent modes. Figures 3.2 and 3.3 summarize the temporal patterns vICE
k

and vSSTk , respectively, showing snapshots of the vICE
k and vSSTk time series, power

spectral densities, and autocorrelation functions. We use the letters P , L, and I

to designate periodic, low-frequency, and intermittent modes, respectively.

The periodic modes exist in doubly degenerate pairs with temporal patterns

vk(t) that are sinusoidal with a relative phase of π/2, and with frequencies of integer

multiples of 1 yr−1. The leading two pairs of periodic modes carry more variance

than any of the low-frequency or intermittent modes, and represent annual and

semiannual variability, respectively. The low-frequency modes carry the majority

of their spectral power over interannual to decadal timescales, and have a typical

decorrelation time of 3–4 years.

The intermittent modes are characterized by broadband spectral power cen-

tered on a base frequency of oscillation with some bias towards lower frequencies.

Similar to the periodic modes, these modes come in nearly degenerate pairs. The

temporal behavior of the intermittent modes resembles a periodic signal modulated

by a low frequency envelope. In the spatial domain, they are characterized by a

bursting-type behavior with periods of quiescence followed by periods of strong

activity. The intermittent modes carry lower variance than their low-frequency

and periodic counterparts (see Fig. 3.1a), however they play a crucial role in

explaining the sea-ice reemergence mechanism, as will be demonstrated in the fol-
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lowing sections of this chapter. Elsewhere (Giannakis and Majda, 2012b), it has

been demonstrated that this class of modes has high significance in external-factor

regression models for low-frequency modes, in which the intermittent modes are

used as prescribed external factors (forcings). Intermittent type modes highlight

the main difference between SSA and NLSA: NLSA captures low-variance pat-

terns of potentially high dynamical significance using a small set of modes, while

classical SSA does not.

The sea-ice PCs, vICE
k , are certainly not independent of the SST PCs, vSSTk .

We find that each sea-ice PC is strongly correlated with a certain SST PC. In

Fig. 3.4, we show correlations between selected sea ice and SST PCs. Moti-

vated by these correlations, we define the following coupled modes of sea ice-

SST variability: P1 = (P ICE
1 , P SST

1 ), P2 = (P ICE
2 , P SST

2 ), P3 = (P ICE
3 , P SST

3 ),

P4 = (P ICE
4 , P SST

4 ), L1 = (LICE
1 , LSST

2 ), L2 = (LICE
3 , LSST

1 ), I1 = (I ICE
1 , ISST3 ),

I2 = (I ICE
2 , ISST4 ), I3 = (I ICE

3 , ISST2 ), I4 = (I ICE
4 , ISST1 ), I5 = (I ICE

5 , ISST8 ), I6 =

(I ICE
6 , ISST7 ), I7 = (I ICE

7 , ISST6 ), and I8 = (I ICE
8 , ISST5 ). Note that the mode pairs

{P1,P2}, {P3,P4}, {I1, I2}, {I3, I4}, {I5, I6}, and {I7, I8} are degenerate modes

with a relative phase of π/2.

A number of different values of ε, the locality parameter of the Gaussian kernel,

were tested to examine the robustness of these results. We find that the modes

are very similar for values of ε ∈ [1, 2]. For values of ε outside this interval, we

observe a less clean split between L2 and certain intermittent modes, resulting in

modes with power spectra that resemble a combination of the low-frequency and

intermittent modes. We find that the periodic modes and modes {L1, I1, I2, I5, I6},

which will be important later in the chapter, are much more robust with respect

to changes in ε. These modes are very similar for values of ε ∈ [0.5, 5].
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Figure 3.2: Snapshots of the time series, power spectral density, and autocorrela-
tion functions for the sea-ice PCs (vk) from coupled NLSA. Shown here are the
annual periodic (P ICE

1 ) and semiannual periodic (P ICE
3 ) modes, the NPGO mode

(LICE
1 ), the PDO mode (LICE

2 ), annual intermittent modes (I ICE
1 and I ICE

3 ), and
semiannual intermittent modes (I ICE

5 and I ICE
7 ). The autocorrelation vertical scale

is [-1,1]. The power spectral densities (fk) were estimated over the full 900 year
timeseries via the multitaper method with time-bandwidth product p = 6 and
K = 2p− 1 = 11 Slepian tapers.
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Figure 3.3: Snapshots of the time series, power spectral density, and autocorre-
lation functions for the SST PCs (vk) from coupled NLSA. Shown here are the
annual periodic (P SST

1 ) and semiannual periodic (P SST
3 ) modes, the PDO mode

(LSST
1 ), the NPGO mode (LSST

2 ), annual intermittent modes (ISST1 and ISST3 ), and
semiannual intermittent modes (ISST5 and ISST7 ). The autocorrelation vertical scale
is [-1,1]. The power spectral densities (fk) were estimated over the full 900 year
timeseries via the multitaper method with time-bandwidth product p = 6 and
K = 2p− 1 = 11 Slepian tapers.
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Figure 3.4: Correlations between selected SST and and sea-ice principal compo-
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3.3.2 Spatiotemporal modes

Figure 3.5 shows the spatial patterns of the coupled modes defined above at

a snapshot in time. Movie 1, showing the evolution of these spatial patterns, is

available in the online supplementary material, and is much more illuminating.

Periodic modes

The pair of annual periodic modes, {P1,P2}, have a sea-ice pattern which

involves spatially uniform growth in the Bering and Okhotsk Sea from October

to March and spatially uniform melt from April to September. The SST pattern

is intensified in the western part of the basin and along the West Coast of North

America. Moreover, it is relatively uniform zonally, and out of phase with the
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annual periodic sea-ice anomalies. The semiannual pair of modes, {P3,P4}, have

a sea-ice pattern with strong amplitude in the southern part of the Bering and

Okhotsk seas and much weaker amplitude in the northern part of these seas. The

SST pattern of these modes is, again, relatively uniform zonally and intensified

in the western part of the basin. The higher-frequency periodic modes have more

spatial structure and zonal variability, as well as smaller amplitude.

Low-frequency modes

The leading low-frequency mode, L1, has an SST pattern that resembles the

NPGO (Di Lorenzo et al., 2008), which is the second leading EOF of seasonally

detrended Northeast Pacific (180◦W – 110◦W and 25◦N – 62◦N) SST. Computing

pattern correlations between EOFs of Northeast Pacific SST and the q SST spatial

patterns of L1, we find a maximum pattern correlation of 0.94 with EOF 2, the

NPGO mode. If we consider basin-wide SST patterns, we find that the SST

pattern of L1 has a maximum pattern correlation of 0.82 with EOF 3 of North

Pacific (120◦E – 110◦W and 20◦N – 65◦N) SST. EOF 3 has a pattern correlation

of 0.91 with the NPGO, thus this mode seems to reflect the basin-wide pattern

of variability corresponding to the NPGO mode of the Northeast Pacific. In light

of these correlations, we call L1 the NPGO mode. Note that these SST EOFs

were computed using SST output from the CCSM3 model. The NPGO mode has

its dominant sea-ice signal in the Bering Sea, and its amplitude is largest in the

southern part of the Bering Sea. Its SST pattern has a strong anomaly of opposite

sign, spatially coincident with the sea-ice anomaly, as well as a weaker anomaly

extending further southward and eastward in the domain.

The second low-frequency mode, L2, has a spatial pattern resembling the PDO,
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which is the leading EOF of seasonally detrended North Pacific SST data (Mantua

and Hare, 2002). Computing pattern correlations between EOF 1 of North Pacific

SST (the PDO) and the SST pattern of L2, we find a maximum pattern correlation

of 0.99. Also, EOF 1 of Northeast Pacific SST (which has a 0.99 pattern correlation

with the PDO) has a maximum pattern correlation of 0.98 with the SST pattern of

L2. In light of these correlations, we call L2 the PDO mode. The sea-ice component

of the PDO mode consists of sea-ice anomalies along the Kamchatka Peninsula,

and in the southern and eastern parts of the Sea of Okhotsk. The SST pattern

consists of a large-scale SST anomaly along the Kuroshio extension region, and an

anomaly of the opposite sign along the west coast of North America.

Intermittent modes

The leading pair of intermittent modes, {I1, I2}, have a base frequency of 1 yr−1

and are characterized by a strong pulsing sea-ice anomaly in the southern Bering

Sea and a weaker anomaly of opposite sign in the Sea of Okhotsk. The SST pattern

consists of a strong pulsing dipole anomaly in the Bering Sea and weaker small-

scale temperature anomalies that propagate eastward along the Kuroshio extension

region. The next pair of annual intermittent modes, {I3, I4}, have sea-ice anoma-

lies that originate in the Bering Sea and propagate along the Kamchatka peninsula

into the Sea of Okhotsk. The SST pattern is a basin-wide signal, with strong in-

termittent anomalies along the Kuroshio extension region, as well as in the Sea

of Okhotsk and Bering Sea. The semiannual intermittent mode pairs {I5, I6} and

{I7, I8}, are active in similar parts of the domain as {I1, I2} and {I3, I4}, respec-

tively, and have finer spatial structure compared with their annual counterparts.
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Figure 3.5: Snapshots of raw data and spatiotemporal modes from coupled NLSA.
See movie 1 for the dynamic evolution of these modes.
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3.3.3 Connection between low-frequency and intermittent

modes

The intermittent modes have time series which appear to be a periodic mode

modulated by a low-frequency signal. What low-frequency signal is modulating

these modes? It turns out that most intermittent modes can be directly associated

with a certain low-frequency mode from NLSA. Figure 3.6 shows time series snap-

shots for the annual and semiannual intermittent SST modes, ISST1 , ISST3 , ISST5 ,

and ISST7 , and low-frequency envelopes defined by LSST
1 (the PDO mode) and LSST

2

(the NPGO mode). We observe that ISST3 and ISST7 fit inside the NPGO envelope,

and do not fit inside the PDO envelope. Similarly, ISST1 and ISST5 fit inside the

PDO envelope and not the NPGO envelope. Despite clearly being modulated by a

certain low-frequency mode, the intermittent modes are not simply products of a

periodic mode and a low-frequency mode. The sea-ice modes also share a similar

relationship between the low frequency and intermittent modes. {I ICE
1 , I ICE

2 }, and

{I ICE
5 , I ICE

6 } are clearly modulated by LICE
1 (the NPGO mode). {I ICE

3 , I ICE
4 }, and

{I ICE
7 , I ICE

8 } are not as clearly modulated by a certain low-frequency mode, but

they are most closely associated with LICE
3 (the PDO mode).

The intermittent modes have important phase relationships with their corre-

sponding periodic modes. We find that the intermittent modes tend to either phase

lock such that they are in phase or out of phase with the periodic mode, and this

phase locking is determined by the sign of the low-frequency signal that modulates

the intermittent mode. However, the intermittent modes also experience other

phase relationships with the periodic modes, particularly during transitions be-

tween the two phase-locked regimes. In Fig. 3.7 we show three characteristic phase
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1 plotted along
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1 , P ICE
2 }, a

test for how close the intermittent modes are to being a product of periodic and
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time evolution.
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relationships between the intermittent and periodic modes. These plots, as well

as the corresponding visualization in movie 2, show evolution of the intermittent

modes {I ICE
1 , I ICE

2 } in the I ICE
1 − I ICE

2 complex plane (blue dots) and the periodic

modes {P ICE
1 , P ICE

2 } in the P ICE
1 −P ICE

2 plane (red dots). The periodic modes trace

a circle in the P ICE
1 −P ICE

2 complex plane, and the intermittent modes trace out a

more complicated trajectory. Also, plotted in cyan along the real axis is the value

of LICE
1 , the NPGO mode. We find that {I ICE

1 , I ICE
2 } is in phase with {P ICE

1 , P ICE
2 }

when LICE
1 > 0 and out of phase when LICE

1 < 0. Finally, the green dot is the ratio

of {I ICE
1 , I ICE

2 } to {P ICE
1 , P ICE

2 }, where the ratio is taken by first writing these points

in complex polar form. If {I ICE
1 , I ICE

2 } were indeed the product of {P ICE
1 , P ICE

2 }

and LICE
1 , we would expect this green dot to be perfectly coincident with the cyan

dot for LICE
1 . We observe that the intermittent mode is close to being a product

of these two, yet is not an exact product (e.g., Fig. 3.7b). A similar phase be-

havior is observed for most other intermittent modes, but in some cases the near

product relationship does not apply. For instance, {ISST1 , ISST2 } are near products

of {P SST
1 , P SST

2 } and LSST
1 , but the corresponding ice modes, {I ICE

3 , I ICE
4 }, deviate

significantly from the product of {P ICE
1 , P ICE

2 } and LICE
3 . In section 5 ahead, we

will see that the phase relationships between the intermittent and periodic modes

have important implications for explaining reemergence.

3.3.4 Comparison with SSA

In addition to NLSA, we also performed SSA on the coupled sea ice-SST

dataset. These calculations were done by normalizing both variables to unit vari-

ance, and then performing SSA on the concatenated dataset. SSA produces pe-

riodic and low-frequency modes, and also two modes whose temporal patterns
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loosely resemble the intermittent modes of NLSA, with a broadband power spec-

trum around a certain base frequency and a bias towards lower frequencies. The

periodic modes of SSA are very similar to the periodic modes of NLSA, but we

observe a number of differences in the non-periodic modes. NLSA produces two

low-frequency modes, which correlate strongly with the NPGO and PDO, respec-

tively. SSA, on the other hand, produces a large number of low-frequency modes,

most of which correlate most strongly with the PDO. For example, if we consider

EOFs of North Pacific SST, we find that the leading eight low-frequency modes

of SSA all correlate most strongly with the PDO (EOF 1). If we consider EOFs

from the Northeast Pacific, we find that low-frequency modes 1, 2, 4, 5, 7, and 8

all correlate most strongly with the PDO (EOF 1) and modes 3 and 6 correlate

most strongly with the NPGO (EOF 3). Low-frequency mode 3 has pattern cor-

relations of 0.83 and 0.87 with the PDO and NPGO, respectively, and its spatial

pattern looks like a mixed PDO-NPGO signal. The NLSA modes cleanly split

low-frequency SST patterns between different modes, whereas SSA tends to mix

these patterns over a large number of low-frequency modes. A consequence of this

is that NLSA may be more effective at capturing patterns of variability using a

small subset of modes. The two SSA modes that have a broadband power spec-

trum centered on a base frequency are different from the intermittent modes of

NLSA in that their temporal patterns are not modulated by any of the the low-

frequency SSA modes. Rather, these time series evolve independently of the other

SSA modes. Figure 3.8 shows temporal patterns of selected SSA modes, and the

spatiotemporal evolution of these modes in shown in Movie 7 of the supplementary

material.

We also performed NLSA on the unit variance dataset as a comparison with
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Figure 3.8: Snapshots of the time series, power spectral density, and autocorrela-
tion functions for PCs obtained via SSA on the unit-variance normalized SST-sea
ice dataset from CCSM3. Shown here are the annual periodic (P1) and semiannual
periodic (P3) modes, the leading four low-frequency modes (L1,L2,L3,L4), and two
modes which resemble annual intermittent modes (I1,I2).
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the phase velocity normalization presented above. We find three low-frequency

modes, and pairs of annual and semiannual intermittent modes associated with

these modes. A primary difference is that, unlike the phase velocity results above,

the low-frequency modes do not cleanly split into patterns associated with the

NPGO and PDO. Rather, low-frequency modes 1 and 2 correlate most strongly

with the PDO (this is true for both North Pacific and Northeast Pacific EOFs).

Low-frequency mode 3 has correlations of 0.81 and 0.89 with the PDO and NPGO

(defined using Northeast Pacific EOFs), respectively, and has a spatial pattern

that reflects a mixed NPGO-PDO signal.

3.4 Sea-ice reemergence via NLSA

3.4.1 Sea-ice reemergence in the North Pacific

Inspired by the sea-ice reemergence mechanism put forward by BW, we study

time lagged correlations of sea ice in the North Pacific sector of the ocean. We

focus on the Bering and Okhotsk seas, the two primary areas of sea-ice variability

in the North Pacific. BW observe a spring-fall sea-ice reemergence, in which sea-ice

anomalies of a certain sign in spring tend to produce anomalies of the same sign in

the fall, despite lagged correlations dropping to near zero in the intervening summer

months. The authors propose that spring sea-ice anomalies create an anomaly of

opposite sign in SST, and this SST imprint is retained over the summer months

as the sea ice melts and the sea-ice edge moves northwards. In the fall, the sea-ice

edge begins to move southward and when it reaches the SST anomaly it reinherits

an ice anomaly of the same sign as the spring. It is by this proposed mechanism

that SST stores the memory of melt season sea-ice anomalies, allowing the same
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anomaly to be reproduced in the growth season.

3.4.2 Correlation methodology

BW compute time-lagged correlations for total arctic sea-ice area as a method

for examining sea-ice reemergence. One drawback to this approach is that dy-

namically relevant spatial structures, such as sea-ice dipoles, are integrated away

when only considering total sea-ice area. In order to capture the memory in sea-

ice spatial patterns, we perform time-lagged pattern correlations on the sea-ice

concentration data.

Specifically, we compute time lagged pattern correlations using the following

methodology. First, we define ām(x, y), the average sea-ice concentration in a given

month m, as a function of space. Let T be the number of samples of month m,

and let mk correspond to sample number 12(k−1) +m, the mth month of the kth

year. We set

ām(x, y) =

T∑

k=1

amk
(x, y)

T
.

Next, we define the pattern correlation between times mk = 12(k − 1) + m and

m′j = 12(j − 1) +m′ as

Pmkm
′
j

=

〈
amk

(x, y)− ām(x, y), am′
j
(x, y)− ām′(x, y)

〉

‖amk
(x, y)− ām(x, y)‖‖am′

j
(x, y)− ām′(x, y)‖ .

In the above, 〈·, ·〉 and ‖ · ‖ denote the Euclidean (area-weighted) inner product

and two-norm with respect to the spatial gridpoints (x, y). Finally, we define the
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time lagged pattern correlation between months m and m+ τ as the time average

of all pattern correlations:

Cm,m+τ =

T−2∑

k=1

Pmkm
′
j

T − 2
,

where mk = 12(k − 1) + m and m′j = 12(j − 1) + m′ = mk + τ . Note that time

averaging is done over T − 2 samples, because for lags up to 24 months there are

only T − 2 pairs of mk and mk + τ .

3.4.3 Time lagged pattern correlations in the North Pacific

sector

We compute time lagged pattern correlations in the North Pacific sector for all

months and lags from 0 to 23 months, the results of which are shown in Fig. 3.9. In

Fig. 3.9, the white boxes are not significant at the 95% level using a t–distribution

statistic. All colored boxes are significant at the 95% level. Figure 3.9a shows time

lagged total area correlations computed in the same way as BW, except being done

for the North Pacific rather than the entire Arctic. We observe a similar corre-

lation structure to that of BW, with one noteable difference. There is an initial

decay of correlation over a 3–6 month timescale, after which, for the months of

January–July, we observe an increase in correlation. This region of increased corre-

lation is analogous to the “summer limb” of BW. In this summer limb, we can see

natural pairings of spring months and the corresponding fall months in which the

spring anomaly reemerges. These pairings are July-October, June-November, May-

December, April-January, and March-January/February; they represent months at
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which the sea-ice edge is similar in melt and growth seasons. A main difference

between the North Pacific and the entire Arctic is that the North Pacific data does

not contain a “winter limb” of anomalies produced in fall that are reproduced the

following summer. This is because the North Pacific contains very little sea ice in

the summer months. Figure 3.10 shows the monthly mean values plus/minus one

standard deviation of North Pacific SST and sea-ice concentration in the CCSM3

dataset. We see that the sea-ice concentration is close to zero in the summer

months and, moreover, there is significantly higher sea-ice variability in high sea

ice months.

Figure 3.9b shows lagged pattern correlations for North Pacific sea ice. As

expected, the correlations are significantly weaker than in the total area lagged

correlation case, since having a pattern correlation in anomalies is a much more

stringent test than simply having correlations in total area of anomalies. Despite

being weaker, the pattern correlations still have the “summer limb” structure ob-

served in Fig. 3.9a, and these correlations are significant at the 95% level. Most

lagged pattern correlations besides the inital decay and the summer limb are not

significant at the 95% level. Figures 3.9c and 3.9d show lagged pattern correlations

for the Bering (165◦E – 160◦W and 55◦ – 65◦N) and Okhotsk (135◦E – 165◦E and

42◦ – 65◦N) Seas, respectively. Each of these seas has a similar lagged pattern

correlation structure to the full North Pacific sector in Fig. 3.9b.

Next, we seek to reproduce the lagged pattern correlations seen in the raw

sea-ice data using a low dimensional subset of coupled NLSA modes. We find

that in each sea, a different set of modes is active, thus we choose to focus on

the Bering and Okhotsk seas individually. In the Bering Sea, we find that modes

{L1, I1, I2, I5, I6} qualitatively reproduce the lagged pattern correlation structure
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Figure 3.9: Lagged correlations for North Pacific sea ice for all months and lags
from 0 to 23 months. (A) shows the lagged correlation structure in total arctic sea-
ice area, computed following the methodology of BW. All other panels are lagged
pattern correlations: (B) North Pacific with raw data; (C) and (D) are computed
in the Bering and Okhotsk Seas, respectively, using raw data; (E) Bering Sea with
modes {L1, I1, I2, I5, I6}; (F) Okhotsk Sea with modes {L2, I3, I4, I7, I8}. Colored
boxes indicate correlations which are significant at the 95% level based on a t-test.
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Figure 3.10: Monthly mean sea-ice concentration and SST from CCSM3, with
the dashed line showing ±1σ. The SST variance is relatively uniform across all
months, while the sea-ice variance is much larger in high concentration months.

seen in raw data. L1 is the NPGO mode and the other modes are the annual

and semiannual intermittent modes which are modulated by the NPGO envelope.

Moreover, this set appears to be the minimal subset, as smaller subsets of modes

are unable to reproduce the correlation structure of the raw data. Figure 3.9e

shows Bering Sea lagged pattern correlations computed using this three mode

family, which we call the NPGO family. We see that this family has a very similar

summer limb to the raw data, except with higher correlations, since this three–

mode family decorrelates more slowly than the raw data.

Attempting a similar construction in the Okhotsk Sea, we find that modes

{L2, I3, I4, I7, I8} do the best job of reproducing the lagged pattern correlation

structure. However, this mode family has clear deficiencies, as can be seen in
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Fig. 3.9f. In particular, this mode family fails to reproduce the summer decor-

relation that is observed in the raw data and also has a less contiguous summer

limb. L2 is the PDO mode and these intermittent modes are the annual and semi-

annual intermittent modes most closely associated to the PDO. Note that these

intermittent modes are not perfectly modulated by the PDO, which may explain

why this PDO family is unable to capture the sea-ice reemergence signal as well as

the NPGO family. Instead, in section 5f ahead we will see that this PDO family

is more closely related to SST reemergence (Alexander et al., 1999).

Many other NLSA mode subsets were tested, but were unable to reproduce the

correlation structure of the raw data as well as the subsets above. Also, the same

procedure was performed using SSA modes, and it was found that small subsets of

SSA modes (fewer than 25 modes) were unable to reproduce the lagged correlation

structure of the raw data.

3.4.4 A sea-ice reemergence mechanism revealed through

coupled NLSA

Using the low-dimensional family of modes {L1, I1, I2, I5, I6}, active in the

Bering Sea, to reconstruct patterns in the spatial domain, we observe sea ice and

SST patterns which are remarkably consistent with the mechanism suggested by

BW. Figure 3.11 shows the evolution of the three-mode family over the course of a

year. These spatial patterns are composites, obtained by averaging over all years

in which the NPGO is active in its positive phase (defined as LSST
2 > 1.5). A

very similar spatiotemporal pattern, with opposite sign, occurs in years when the

NPGO is active in its negative phase. The dynamic evolution of this three-mode

family is shown in movie 3. In January, there is a positive sea-ice anomaly and
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Figure 3.11: Sea Ice and SST patterns for different months of the year, recon-
structed using {L1, I1, I2, I5, I6}. These spatial patterns are composites, obtained
by averaging over all years in which the NPGO is active, in its positive phase
(defined as LSST

2 > 1.5). The Bering Sea (boxed) exhibits a spring-fall sea-ice
reemergence. Positive spring sea-ice anomalies imprint negative SST anomalies as
they move northward during the melt season. The SST anomalies persist through
the summer months, and when the ice returns in the growth season, the positive
sea-ice anomaly is reproduced. See movie 3 for the dynamic evolution of this mode
family.
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a negative SST anomaly in the southern part of the Bering Sea. The main SST

anomaly extends slightly further south than the sea-ice anomaly, and there is also

a weaker negative anomaly extending southward and eastward in the domain. The

positive ice anomalies continue to move southward through the growth season, un-

til reaching the maximum ice extent in March. The SST anomaly has not changed

significantly from January and is primarily localized to the ice anomaly region. In

particular, there is no SST anomaly in the northern part of the Bering Sea. The

melt season begins in April, and in May we observe that the sea-ice anomaly has

moved northward. The SST anomaly has also extended northward while main-

taing its southern extent from March. In July the sea ice retreats further and only

a weak positive anomaly remains in the Bering Sea. By September essentially no

sea-ice anomaly remains in the Bering Sea. Despite the sea-ice anomaly being ab-

sent in September, the SST has a strong negative anomaly throughout the entire

Bering Sea region. The northern Bering sea, previously free of SST anomalies,

now has a negative anomaly, imprinted by the positive sea ice anomalies moving

through the region during the melt season. As the sea ice returns to the domain in

October–December, the ice interacts with the SST anomaly, using the cold SST to

grow additional ice, and reproduces the positive ice anomaly that we observed in

the spring. In November, part of the northern Bering Sea’s negative SST anomaly

has been wiped out, and the ice has begun to redevelop its positive anomaly. The

ice continues to grow stronger positive anomalies as it moves southward and in

January the cycle roughly repeats again. We observe this mechanism with the

NPGO mode in both positive and negative phase.

As could be expected from Fig. 3.9f, the mode family {L2, I3, I4, I7, I8} does not

have a clear sea-ice reemergence in the Okhotsk Sea. This family does exhibit a
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winter-winter persistence of ice anomalies, but the anomalies tend to unrealistically

persist over the intervening summer months.

3.4.5 Reemergence conditioned on low-frequency modes

We earlier noted that the NPGO mode family {L1, I1, I2, I5, I6} is able to re-

produce the lagged correlation structure seen in sea-ice data in the Bering Sea.

Additionally, we know that the intermittent modes within the mode families iden-

tified here are modulated by the low-frequency mode of that family. Thus, in order

to determine whether a given mode family is active, we can simply assess whether

or not the corresponding low–frequency mode is active. Given these observations,

one would expect to see an enhanced reemergence structure if we performed lagged

correlations on the raw sea-ice data, conditional on a certain low-frequency mode

being active. Indeed, if we condition on the NPGO being active, we observe an

enhanced summer limb in the lagged pattern correlation structure of the Bering

Sea raw data. Similarly, if we condition on the NPGO being inactive, we find that

the summer limb is significantly weakened. Figure 3.12 shows conditional lagged

pattern correlations for these various cases. Note that the NPGO is defined as

“active” over the time interval [t, t + ∆t] if |LSST
2 | > 1.5. The NPGO index is

defined for t ∈ [1, s− q].

This summer limb strengthening has implications for regional sea-ice predictibil-

ity. In particular, tracking the NPGO index should help one predict whether a

given spring anomaly in the Bering sea will return the following fall.
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Figure 3.12: Lagged pattern correlations for raw sea-ice data in the Bering Sea,
conditional on the NPGO principal component being active. (A) shows the Bering
result with no conditioning. (B) and (C) show the Bering sea conditioned on
|LSST

2 | > 1.5 (all values above the 82nd percentile) and |LSST
2 | < 1 (all values below

the 65th percentile), respectively. Colored boxes indicate correlations which are
significant at the 95% level based on a t-test.
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3.4.6 Connection to other reemergence phenomena

BW also note a summer-to-summer reemergence in Arctic sea ice, which is

connected to persistence in sea-ice thickness anomalies. This summer-to-summer

reemergence is not seen in the North Pacific sector, since the North Pacific is

essentially sea-ice free for the months of July through October (see Fig. 3.10).

Another reemergence phenomenon active in the North Pacific sector is the

winter-to-winter SST reemergence studied by Alexander et al. (1999). This reemer-

gence consists of the formation of an SST anomaly in winter months, a weakening

of the anomaly over the summer due to the presence of a seasonal thermocline, and

a subsequent re-strengthening the following winter. To investigate the presence of

SST reemergence in the coupled NLSA modes, we perform a lagged correlation

analysis analogous to the sea-ice study above.

We focus on the domains of active SST reemergence defined by Alexander

et al. (1999): the central (26◦− 42◦N, 164◦− 148◦W), eastern (26◦− 42◦N, 132◦−

116◦W), and western (38◦−42◦N, 160◦−180◦E) Pacific. For each of these domains,

time lagged pattern correlations of SST were computed, including conditioning on

certain low-frequency SST modes being active. It was found that correlations were

significantly strengthened when the PDO mode (L2) was active, and were relatively

unaffected by the state of the NPGO mode (L1). Figure 3.13 shows time-lagged

pattern correlations for the central, eastern, and western Pacific domains, for both

the raw SST data, and the raw SST data conditioned on an active PDO. In the

central and eastern parts of the basin, we observe a strengthened reemergence

signal when the PDO is active, as there is a clear drop in correlation over the

summer months and a significantly stronger increase in correlation the following

winter. In the western part of the basin, the reemergence signal is clear without any
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Figure 3.13: Lagged correlations for North Pacific SST for all months and lags from
0 to 23 months. (A), (C), and (E) show lagged correlations of raw SST data in the
central, eastern, and western Pacific, respectively. (B), (D), and (F), show lagged
correlations in the same domains, conditional on |LSST

1 | > 1.5 (all values above the
82nd percentile). Colored boxes indicate correlations which are significant at the
95% level based on a t-test.

PDO conditioning. With an active PDO, the correlations become stronger, and

the summer decorrelation remains visible. Note that, unlike North Pacific sea-ice

reemergence, the SST correlations do not vanish over the summer months. Rather,

they simply weaken over the summer and re-strengthen the following winter.
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Figure 3.14: SST patterns for different month of the year, reconstructed using
{L2, I3, I4, I7, I8}. These spatial patterns are composites, obtained by averaging
over all years in which the PDO is active, in its positive phase (defined as LSST

1 >
1.5). The central, eastern, and western Pacific domains are boxed. The central
pacific exhibits a reemergence of SST anomalies, while weaker reemergences are
present in the eastern and western Pacific. The dynamic evolution of this mode
family is shown in Movie 4.

Following the sea-ice approach above, we seek a low-dimensional family of

NLSA modes that reflect the lagged correlation structure of the raw data. We

find that the PDO mode family, {L2, I3, I4, I7, I8}, has the highest skill in repro-

ducing the observed correlations. Figure 3.14 shows a composite reconstruction

of the SST patterns of the PDO family, where the composite is taken over years

where the PDO index is high (LSST
1 > 1.5). SST reemergence is most strikingly

observed in the central Pacific. We observe a strong negative SST anomaly in

January and March, which begins to decay in May, and is significantly weaker, yet

still positive, in September. The anomaly begins to strengthen in November, and

the pattern roughly repeats again the following year. As could be expected by the

lagged correlations, we observe stronger SST persistence in the western Pacific,

however a summer weakening and winter re-strengthening is nonetheless visible.

The anomaly strength is significantly smaller in the eastern Pacific domain, but
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a similar SST reemergence with positive anomalies can be observed, though the

signal is poorly represented with the colorbar of Fig. 3.14 (chosen for the entire

North Pacific). Note that there is also an active SST reemergence with positive

anomalies along the Alaska-British Columbia coastline. When the PDO is active

in its negative phase, a similar pattern is observed, with opposite sign. The dy-

namic evolution of the PDO mode family is shown in Movie 4. An interesting

topic of future study would be to investigate whether the vertical structure of this

reemergence mechanism can be captured by a low dimensional family of NLSA

modes.

3.5 Comparison with Observations

3.5.1 Coupled NLSA on a short time series

To this point, all results have been derived from analysis of a 900-yr CCSM3

model integration. Given the relative shortness of most observational climate time

series, a natural question is whether the coupled NLSA approach can be applied

to a shorter time series for the purposes of exploratory data analysis. Given that

NLSA is based upon sufficient exploration of a high-dimensional manifold, a short

observational time series provides a stringent test for the algorithm. Neverthe-

less, it is plausible that certain coarse-grained nonlinear geometric features are

adequately sampled (in particular, the periodic dimension associated with the sea-

sonal cycle, which is crucial for reemergence). To test the feasibility of NLSA in

this environment, we studied the HadISST dataset, which consists of 34 years of

satellite observations of sea ice and SST.

We performed coupled NLSA on the HadISST dataset in a completely analo-
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gous manner to the CCSM3 results above, using a value of ε = 0.8, a truncation

level of l = 22, and a lagged embedding window of ∆t = 24 months. The re-

sulting temporal modes have very similar characteristics to the temporal modes

of the CCSM3 dataset, cleanly splitting into periodic, low-frequency and intermit-

tent modes. We find that the periodic and intermittent modes come in doubly

degenerate pairs, and that each intermittent mode is modulated by a certain low-

frequency mode. Also, we find that each SST PC is highly correlated with a certain

sea-ice PC, motivating the definition of coupled sea ice-SST modes of variability.

For the sake of brevity, we only define the coupled modes that will be discussed

in the following sections: L1 = (LICE
1 , LSST

2 ), L2 = (LICE
2 , LSST

1 ), I1 = (I ICE
1 , ISST4 ),

I2 = (I ICE
2 , ISST3 ), I3 = (I ICE

3 , ISST2 ), I4 = (I ICE
4 , ISST1 ), I5 = (I ICE

5 , ISST7 ), I6 =

(I ICE
6 , ISST8 ), I7 = (I ICE

7 , ISST5 ), I8 = (I ICE
8 , ISST6 ). Time series snapshots, autocor-

relation functions, and power spectral densities for the leading low-frequency ice

modes and an annual and semiannual intermittent mode are shown in Figure 3.15.

Similar to the CCSM3 results, the spatial patterns of these modes have corre-

spondences with the NPGO and PDO. We find that L1 has a maximum pattern

correlation of 0.65 with EOF 2 of Northeast Pacific SST, and L2 has a maximum

pattern correlation of 0.90 with EOF 1 of North Pacific SST. Note that these EOFs

were computed using SST output of HadISST. In light of these correlations, we

call L1 the NPGO mode and L2 the PDO mode.

The sea-ice patterns of these modes have some notable differences from their

CCSM3 counterparts. L1 has strong sea-ice anomalies in the Bering Sea, but also

has strong anomalies of the opposite sign in the Sea of Okhotsk. This pattern of

sea-ice variability is consistent with the leading sea-ice EOF found in Deser et al.

(2000) and Liu et al. (2007). L2 consists of a strong sea-ice anomaly throughout
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Figure 3.15: Snapshots of the time series, power spectral density, and autocor-
relation functions for the sea-ice PCs (vk) from coupled NLSA on the HadISST
dataset. Shown here are two low-frequency modes (LICE

1 and LICE
2 ), an annual

intermittent mode (I ICE
1 ) and a semiannual intermittent mode (I ICE

5 ). The auto-
correlation vertical scale is [-1,1]. The power spectral densities (fk) were estimated
over the 34 year record via the multitaper method with time-bandwidth product
p = 6 and K = 2p− 1 = 11 Slepian tapers.

the Okhotsk Sea, and also an anomaly of the same sign in the southern part of

the Bering Sea. Each of these low-frequency modes modulates a pair of annual

and a pair of semiannual intermittent modes. These intermittent modes are active

in similar parts of the domain as the low-frequency modes, and have finer spatial

structures, as we also observed with the CCSM3 results.
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3.5.2 Sea-ice reemergence in observations

With these coupled observational modes at our disposal, we now investigate

North Pacific sea-ice reemergence in the observational record. First, we compute

time lagged pattern correlations in the North Pacific sector, shown in Fig. 3.16a.

We observe that there is no reemergence signal visible in these correlations. This

is also the case for correlations computed over the Bering and Okhotsk Seas indi-

vidually. Despite the lack of reemergence in the observational data, we examine a

number of NLSA mode subsets for the presence of a reemergence signal. We find

the strongest signal with the mode family {L1, I1, I2, I5, I6}, where the correlations

are computed over the Bering Sea. The correlations are shown in Fig. 3.16b. This

family also has signs of a reemergence signal in the Okhotsk Sea, except that the

ice anomalies anti-correlate over the summer months, instead of simply decorre-

lating. Does this mode family have any explanatory power with regards to sea-ice

reemergence? The answer appears to be yes. Fig. 3.16c shows North Pacific lagged

pattern correlations, conditional on the NPGO mode, L1, being active. We ob-

serve an emphasized reemergence limb in years when the NPGO mode is active.

A similar appearance of a summer limb is observed in the Bering Sea, but not in

the Okhotsk, when conditioning on an active NPGO.

An sea ice-SST reconstruction for the year 2001, using the mode family {L1,-

I1, I2, I5, I6}, is shown in Figure 3.17. This family shares some similarities to

the NPGO mode family found in CCSM3, with the NPGO mode modulating the

annual and semiannual intermittent modes, but also has many clear differences.

In the winter months, we observe strong sea-ice anomalies of opposite sign in the

Bering and Okhotsk seas. The Okhotsk anomalies were not present in the CCSM3

results. Spatially coincident with these ice anomalies, we observe SST anomalies
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Figure 3.16: Lagged correlations for North Pacific Sea Ice from the HadISST
dataset for all months and lags from 0 to 23 months. (A) Shows lagged correlation
for raw North Pacific sea-ice data, (B) shows lagged correlations for the Bering
Sea computed using the mode family {L1, I1, I2, I5, I6}, and (C) shows lagged cor-
relations in the North Pacific for the raw data, conditional on |LSST

2 | > 1 (all
values above the 75th percentile). Colored boxes indicate correlations which are
significant at the 95% level based on a t-test.
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Figure 3.17: Sea ice and SST patterns for year 2001, reconstructed from the
HadISST dataset using modes {L1, I1, I2, I5, I6}. The Bering and Okhotsk Seas
(both boxed) exhibit a spring-fall sea-ice reemergence. See movie 5 for the dy-
namic evolution of this mode family.

of the opposite sign. We also observe strong SST anomalies throughout most

of the North Pacific basin, especially along the Kuroshio extension region. This

is different from the CCSM3 results, in which the SST anomalies of the NPGO

family were primarily contained in the northern portion of the domain. During

the months of July–October the Bering and Okhotsk Seas are relatively ice free,

and we observe persistence of SST anomalies of opposite sign to the ice anomalies.

Compared to CCSM3 results, the summer SST anomalies do not cover the Bering

Sea as completely; there is a portion of the northwest Bering sea that remains

anomaly-free over the summer. In the late fall and early winter, sea-ice anomalies

reappear in the Bering and Okhotsk seas, adopting the same sign they had the
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previous winter. This cycle roughly repeats itself the following winter. This family

reflects the same SST-sea ice reemergence mechanism as seem in CCSM3, albeit

in a slightly less clean manner.

Why is the North Pacific sea-ice reemergence signal significantly stronger in

CCSM3 than in observations? One possibility is that the CCSM3 model overem-

phasizes the winter-to-winter persistence of the ice and SST anomalies associated

with the NPGO. Another possibility is that the raw observational data, after lin-

ear detrending, contains a residual signal associated with a nonlinear trend. This

nonlinear trend may act to obscure the reemergence signal in the raw data, though

we find that the reemergence signal is sufficiently strong to be recoverable in the

NPGO-conditioned data. Yet another possibility is that over the relatively short

observational record, the low-frequency NPGO mode has been generally inactive,

and a longer time series would reveal the reemergence signal.

To investigate the latter possibility, we divided the 900-year CCSM3 record

into a number of 34 year datasets, analogous to the length of the observational

record, and performed lagged correlations on each of these short timeseries. We

found significant variation in the sea-ice reemergence signal over these different

datasets, including some sets where the reemergence signal was absent, much like

in observations. There were other 34 year datasets which contained a much stronger

reemergence limb, quite similar to the conditional lagged correlations of Fig. 3.12b.

Therefore, it is plausible that the record of satellite observations is simply too short

to provide a sufficient sampling of low-frequency variability of the coupled ocean-

sea ice system, and correlations computed using this dataset may not fully reflect

the intrinsic variability of this system. We also computed lagged correlations of

the sea-ice observations in other parts of the Arctic Ocean, and found strong
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reemergence signals in the Barents and Kara Seas, the Labrador Sea, and the

Greenland Sea.

3.5.3 SST reemergence in observations

We also investigate SST reemergence in the HadISST dataset by computing

time lagged pattern correlations in the North Pacific. Fig. 3.18a shows lagged cor-

relations of the raw SST data and Fig. 3.18b shows lagged correlations conditional

on the PDO mode, L2, being active. We observe a strengthened winter-to-winter

SST reemergence when the PDO is active. We also conditioned on other low-

frequency modes, and found that the PDO produces the most prominent strength-

ening of correlation. Note that these correlations are computed over the entire

North Pacific domain, rather than the smaller domains considered in section 5f.

This choice was made because the conditional correlations were quite noisy when

performed over the smaller domains, since the PDO is only “active” for about 25%

of the observational record.

The coupled NLSA observational modes also have a mode family {L2, I3, I4,-

I7, I8}, which is analogous to the PDO family of CCSM3. In Fig. 3.19 we show

an SST reconstruction for the year 2005 using this mode family. We observe an

active SST reemergence in the central and eastern Pacific domains, but there is

not a clear reemergence in the western Pacific. The reemergence in the central

and eastern Pacific happens at different times of year, with weakest anomalies

in September and November, respectively. Similar to the CCSM3 results, the

observational PDO family has a large-scale anomaly along the Kuroshio extension

region, and significant variability in the central Pacific. A primary difference is

that the observational PDO family has much stronger anomalies along the west
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Figure 3.18: Lagged correlations for North Pacific SST from the HadISST dataset
for all months and lags from 0 to 23 months. (A) Shows lagged correlation for
raw North Pacific SST data, (B) shows lagged correlations in the North Pacific for
the raw data, conditional on |LSST

1 | > 1.5 (all values above the 75th percentile).
Colored boxes indicate correlations which are significant at the 95% level based on
a t-test.

coast of North America than the PDO family of CCSM3.

3.6 Conclusions

In this work, we have studied reemergence mechanisms for North Pacific sea ice

in comprehensive climate model output and in satellite observations. We have uti-

lized the newly developed coupled NLSA algorithm (Chapter 2), which allows for

a scale-invariant coupled analysis of multiple variables in different physical units.
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Figure 3.19: SST patterns for year 2005, reconstructed from the HadISST dataset
using modes {L2, I3, I4, I7, I8}. The central, eastern, and western Pacific domains
are boxed. The central and eastern Pacific exhibit a reemergence of SST anomalies.
See movie 6 for the dynamic evolution of this mode family.

This algorithm computes a kernel matrix using the individual phase space veloc-

ities for each variable, simultaneously removing physical units from the analysis,

as well as implicitly selecting the variance ratio between the two variables. The

coupled NLSA algorithm was applied to North Pacific SST and sea-ice concen-

tration data from a 900-year CCSM3 control integration, and a set of temporal

patterns, analogous to PCs, and spatiotemporal patterns, analogous to extended

EOFs, were obtained. The same analysis was performed on the 34 year record of

sea ice and SST satellite observations. The modes recovered by coupled NLSA in-

clude periodic and low-frequency patterns of variability of sea ice and SST, as well

as intermittent patterns not captured by SSA. The leading low-frequency modes

correlate well with the familiar PDO and NPGO patterns of North Pacific SST

variability. The intermittent modes have a base frequency of oscillation and are

modulated by either the PDO or NPGO low-frequency signal, and tend to either

be in phase or out of phase with their corresponding periodic cycle.
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Using the modes obtained via coupled NLSA, we investigated the phenomenon

of sea-ice reemergence suggested by BW, in the North Pacific region. In the CCSM3

data, it was found that the raw sea-ice data of the North Pacific exhibited a sim-

ilar reemergence of correlation to that seen by BW, a notable difference being

the lack of a “winter limb.” Seeking a low-dimensional family of modes to ex-

plain this reemergence process, we found that the NPGO and its corresponding

annual and semiannual intermittent modes were able to reproduce the lagged cor-

relations seen in the Bering Sea. Moreover, reconstructing patterns in the spatial

domain, we found that this low-dimensional family demonstrates a sea-ice reemer-

gence mechanism, in which summer SST stores the memory of springtime sea-ice

anomalies, remarkably well. It was also found that conditioning the raw sea-ice

data on the NPGO being active, led to a significantly strengthened “summer limb”

in the lagged correlations of the Bering Sea, which has implications for regional

predictability of sea-ice reemergence. Also, the family of NLSA modes related to

the PDO was able capture a winter-to-winter reemergence of SST anomalies, both

in lagged correlations and in spatial reconstructions.

The raw observational sea-ice record does not contain a sea-ice reemergence

signal in the North Pacific sector. However, when conditioned on the NPGO mode

being active, a clear summer limb appears in the raw data lagged correlations.

Additionally, an analogous NPGO family exists for the observations, and displays

a similar SST-sea ice reemergence mechanism. An enhanced winter-to-winter SST

reemergence was found when conditioning on an active PDO. Also, the observa-

tional modes have a PDO family, which exhibits SST reemergence in the North

Pacific. In Chapter 4, we will add sea level pressure to our coupled analysis to

gain insight into the variability of the coupled atmosphere-sea ice-ocean system.
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Chapter 4

Arctic Sea-Ice Reemergence: The

Role of Large-Scale Oceanic and

Atmospheric Variability

4.1 Introduction

Satellite data shows that trends in sea-ice extent are negative for all months of

the year and all Arctic regions except for the Bering Sea (Cavalieri and Parkinson,

2012). In addition to these strong trends, Arctic sea ice also exhibits large internal

variability. Studies using comprehensive climate models have estimated that 50-

60% of recent Arctic sea-ice changes can be attributed to externally forced trends,

with the remainder resulting from internal variability in the climate system (Kay

et al., 2011; Stroeve et al., 2012). Therefore, the challenge of making accurate

projections of future Arctic sea-ice conditions crucially hinges on: (1) quantifying

the sea-ice response to changes in external forcing (i.e., greenhouse gas forcing) and
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(2) understanding the nature and magnitude of internal variability in the coupled

ice-ocean-atmosphere system. The work of this chapter will focus on the latter.

The Arctic regions of interest in this study are shown in Fig. 4.1. The leading

empirical orthogonal function (EOF) of observational Arctic sea-ice concentration

(SIC) exhibits strong out-of-phase anomalies between the Labrador and Greenland-

Barents Seas and weaker out-of-phase anomalies between the Bering Sea and Sea

of Okhotsk (Deser et al., 2000). Regression of sea level pressure (SLP) onto the

corresponding principal component (PC) yields a spatial pattern which closely re-

sembles the Arctic Oscillation (AO, Thompson and Wallace, 1998), the leading

pattern of SLP variability north of 20◦N. Deser et al. (2000) observe a connection

between the low-frequency (interannual to decadal) variability of the atmosphere

and the low-frequency variability of sea-ice. In particular, they find that the AO

and its associated geostrophic winds are physically consistent with the ice anoma-

lies of the leading SIC mode, suggesting that atmospheric circulation anomalies

force sea-ice anomalies. These winds have thermodynamic and dynamic effects on

sea ice via advection of surface air temperature and ice advection. Many other

studies have analyzed sea-ice variability in the context of the AO, finding that the

AO affects sea ice on a wide range of time scales ranging from seasonal (Serreze

et al., 2003) to decadal (Rigor et al., 2002; Rigor and Wallace, 2004; Zhang et al.,

2004). These studies suggest that a “high-index” AO produces an Ekman diver-

gence, leading to reductions in sea-ice thickness and concentration. This process

has been proposed as a mechanism for the recent decline in Arctic sea ice.

Others have questioned the efficacy of the AO as a predictor for sea-ice changes

(Maslanik et al., 2007), suggesting that other patterns of large-scale atmospheric

variability may play a more important role. In particular, an SLP pattern known
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Figure 4.1: The regions of interest in this study: the Barents-Kara Seas (BK), the
Labrador Sea (LS), the Greenland Sea (GS), the Bering Sea (BER), and the Sea
of Okhotsk (OK). The Arctic domain is defined as all grid points north of 45◦N.

as the Arctic Dipole Anomaly (DA) has drawn considerable recent attention (Wu

et al., 2006; Wang et al., 2009; Tsukernik et al., 2010; Overland and Wang, 2005,

2010; Watanabe et al., 2006). The DA exhibits opposite-signed SLP anomalies

between the Eastern and Western Arctic, which drive strong meridional winds.

These winds act to enhance (reduce) sea-ice export from the Arctic basin through

Fram Strait when the DA is in positive (negative) phase. Recent record lows in

summer sea-ice extent generally correspond to years in which the DA index was

positive (Wang et al., 2009). DA-like SLP patterns have also been associated with

the large internal variability observed in the sea-ice component of the Community

Climate System Model Version 3 (CCSM3, Collins et al., 2006; Wettstein and

Deser, 2014). Other studies have suggested that the location and frequency of
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storms (Screen et al., 2011), and the phase of the Pacific-North-America (PNA)

pattern (L’Heureux et al., 2008) also play an important role in setting the summer

sea-ice minimum.

The PCs corresponding to large-scale atmospheric patterns, such as the AO

and DA, are quite noisy and contain significant spectral power at time scales rang-

ing from monthly to decadal. A typical approach has been to initially low-pass

filter the atmospheric component (by forming annual or winter means), as a way of

smoothing out these PCs and emphasizing interannual-to-decadal variability. Be-

sides the studies already cited, a large number of works have analyzed the impact

of this low-frequency atmospheric variability on Arctic sea ice (Walsh et al., 1996;

Proshutinsky and Johnson, 1997; Mysak and Venegas, 1998; Yi et al., 1999; John-

son et al., 1999; Deser et al., 2000; Polyakov and Johnson, 2000; Moritz et al., 2002).

These studies emphasize that sea-ice regimes are modulated by low-frequency at-

mospheric circulation regimes.

The variability of Arctic sea ice is also strongly coupled to sea surface tempera-

ture (SST) variability (e.g., Francis and Hunter, 2007). Blanchard-Wrigglesworth

et al. (2011a) proposed a mechanism for sea-ice–SST co-variability, in which sea-ice

and SST anomalies trade off, allowing for unexpected “memory” effects in sea ice.

These memory effects were termed “sea-ice reemergence”, inspired by the similar

North Pacific and North Atlantic SST phenomena (Alexander et al., 1999; Timlin

et al., 2002; de Cotlogon and Frankignoul, 2003). Sea-ice reemergence is a lagged

correlation phenomenon, in which spring sea-ice anomalies are positively corre-

lated with fall sea-ice anomalies, despite a loss of correlation over the intervening

summer months. There is also a similar, but weaker, reemergence between fall

sea-ice anomalies and anomalies the following spring. The spring-fall mechanism
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of Blanchard-Wrigglesworth et al. (2011a) suggests that spring sea-ice anomalies

imprint SST anomalies of opposite sign, which persist over the summer months.

During the fall, ice grows southward and interacts with these SST anomalies, repro-

ducing ice anomalies of the same sign as the spring. This reemergence mechanism

has been observed in the North Pacific sector in CCSM3 model output and obser-

vations (Chapter 3). Deser et al. (2002) note a similar winter-to-winter persistence

of sea-ice anomalies in the Labrador Sea, and propose an atmospheric mechanism

in which sea-ice anomalies persist due to persistent large-scale atmospheric circu-

lation regimes.

Sea-ice reemergence may also have implications for sea-ice predictability. Day

et al. (2014b) found that sea-ice forecast skill was strongly dependent on initial-

ization month, with certain months exhibiting a slower decay of forecast skill than

others. The authors suggested that this initialization month dependence was at-

tributable to sea-ice reemergence mechanisms. Day et al. (2014b) also examined

sea-ice reemergence in five global climate models (GCMs) and observations, find-

ing robust reemergence signals, of varying strength, across all models and a weaker

reemergence signal in the observational record.

In this study, we examine the coupled variability of Arctic SIC, SST, and SLP

using coupled nonlinear Laplacian spectral analysis (NLSA; Chapter 2), a mul-

tivariate data analysis technique which provides scale-invariant analysis of mul-

tiple variables with different physical units. Coupled NLSA yields spatiotempo-

ral modes, analogous to EEOFs, and temporal modes, analogous to PCs. These

modes are constructed using a set of empirically derived Laplacian eigenfunctions

on the nonlinear data manifold and, unlike linear approaches, do not maximize

explained variance. Compared to linear techniques, NLSA (and other related non-
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linear methods; Berry et al., 2013) provide superior time-scale separation and are

able to effectively capture low-variance modes that may have important dynami-

cal significance. These low-variance modes are known to be crucial in producing

accurate representations of nonlinear dynamical systems (Aubry et al., 1993; Gi-

annakis and Majda, 2012c), and in the present context, are efficient in explaining

reemergence phenomena (Chapter 3).

We use coupled NLSA modes to study the basin-wide and regional characteris-

tics of Arctic sea-ice reemergence in a comprehensive climate model and observa-

tions. We compute modes using CCSM3 model output from a 900-year equilibrated

control integration. Modes are also obtained for the 34-year observational record,

using SIC and SST data from the Met Office Hadley Center Sea Ice and Sea Sur-

face Temperature (HadISST) dataset and Era-Interim SLP reanalysis data. No

preprocessing of the data is required, enabling simultaneous extraction of inter-

annual, annual, and semiannual patterns of variability. Using these modes, we

identify low-dimensional families which efficiently describe sea-ice reemergence.

These families capture a significant portion of the reemergence signal, and have

the surprising property of being relatively low-variance. The families also reveal

time-dependent aspects of reemergence, which were not accessible in previous stud-

ies. The SST and SIC modes of each family exhibit an SST–sea-ice reemergence

mechanism consistent with that of Blanchard-Wrigglesworth et al. (2011a). Inter-

annual components of large-scale SLP variability, which emerge objectively from

this analysis, are found to be related to coherent sea-ice reemergence events in ge-

ographically distinct regions, and suggest an SLP–sea-ice reemergence mechanism.

This paper is organized as follows: In section 2, we briefly summarize the

coupled NLSA algorithm. In section 3, we describe the CCSM3, HadISST, and
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ERA-Interim datasets used in this study. In section 4, we study the SIC, SST, and

SLP spatiotemporal modes obtained via coupled NLSA. In section 5, we examine

the regional and temporal characteristics of sea-ice reemergence, and in section 6,

we investigate oceanic and atmospheric reemergence mechanisms. We conclude in

section 7. Movies, illustrating the spatiotemporal evolution of NLSA modes, are

available as online supplementary material.

4.2 Coupled NLSA methodology

In this study, we apply the coupled NLSA approach, as developed in Chapter

2, to Arctic SIC, SST, and SLP. This technique is an extension of the recently

developed NLSA algorithm (Giannakis and Majda, 2012c, 2013), and provides a

scale-invariant approach for multivariate time series analysis. Unlike other multi-

variate data analysis approaches, coupled NLSA does not require initial normal-

ization of the input fields to unit variance. Rather, the coupled NLSA algorithm

implicitly selects the variance ratio between different physical fields, without re-

quiring a choice of normalization by the user. Here, we refer the reader to the

more thorough description of Chapter 2. In Fig. 4.2 we provide a schematic that

summarizes the flow of data in the coupled NLSA algorithm.

4.3 Dataset description

4.3.1 CCSM3 model output

This chapter analyzes model output from a 900-yr equilibrated control inte-

gration (model run b30.004) of CCSM3 (Collins et al., 2006). This data was
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Figure 4.2: Schematic summarizing the flow of data in the coupled NLSA algo-
rithm.

downloaded from the Earth System Grid website. We use monthly averaged data

for SIC, SST, and SLP, which come from the Community Sea Ice Model (CSIM,

Holland et al., 2006a), the Parallel Ocean Program (POP, Smith and Gent, 2004),

and the Community Atmosphere Model version 3 (CAM3, Collins et al., 2004),

respectively. The model uses a T42 spectral truncation for the atmospheric grid

(roughly 2.8◦ × 2.8◦), and the ocean and sea-ice variables are defined on the same

grid, of 1◦ nominal resolution. This chapter focuses on a pan-Arctic domain, which

we define as all gridpoints north of 45◦N. Note that the seasonal cycle has not been

removed from this dataset. This is crucial for capturing intermittent patterns as-

sociated with reemergence. In particular, intermittent modes, described ahead in

section 4, are not recoverable in datasets that have been deseasonalized (Giannakis

and Majda, 2013). As will be shown ahead in section 5, these modes are essential

in low dimensional descriptions of sea-ice reemergence.

The spatial dimensions (number of spatial gridpoints) of these datasets are

dSIC = dSST = 13,202 and dSLP = 2,048. Using a two-year embedding window with
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q = 24 (Giannakis and Majda, 2012c, Chapter 3), this yields lagged embedding

dimensions (the product of the number of spatial gridpoints and the embedding

window) of qdSIC = qdSST = 316,848 and qdSLP = 49,152. These data are monthly

averaged, and consist of s = 10,800 time samples for the 900-yr simulation period.

The value ∆t = 24 months was used as the time lag because this embedding window

is longer than the seasonal cycle, which is a primary source of non-Markovianity

in this dataset. A number of different embedding windows were tested, yielding

qualitatively similar results for ∆t > 12 months, and qualitatively different results

for ∆t < 12 months.

4.3.2 HadISST observations

We also analyze the HadISST dataset (Rayner et al., 2003), which consists of

monthly averaged SIC and SST data on a 1◦ latitude-longitude grid. The spatial

dimension of the Arctic domain is dSIC = dSST = 9,453. As with the CCSM3 data,

we use an embedding window of ∆t = 24 months, which yields lagged-embedding

dimensions of qdSIC = qdSST = 226,872. In this chapter we use the satellite era

data from January 1979–August 2013. Note that all ice-covered gridpoints in the

HadISST dataset were assigned an SST value of −1.8◦C, the freezing point of salt

water at a salinity of 35 parts per thousand. Also, the trend in the dataset was

removed by computing a long-term linear trend for each month of the year, and

removing the respective linear trend from each month. The seasonal cycle has not

been removed from this dataset.

84



4.3.3 ERA-Interim reanalysis data

Finally, we also study monthly-averaged SLP data from the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis project

(ERA-Interim, Dee et al., 2011). These data are defined on a 0.75◦ latitude–

longitude grid, of considerably higher resolution than the CCSM3 SLP data. The

spatial dimension of the Arctic domain is dSLP = 29, 280, corresponding to a lagged-

embedding dimension of qdSLP = 702,720. These data have been detrended by

subtracting the monthly trend from each month, but the seasonal cycle has not

been subtracted.

4.4 Coupled SIC-SST-SLP spatiotemporal modes

of Arctic variability

We utilize the coupled NLSA algorithm outlined in section 2 to study the

spatiotemporal evolution of (i) SIC, SST, and SLP in CCSM3; and (ii) SIC and

SST from HadISST, and SLP from ERA-Interim. Hereafter, we refer to the joint

HadISST and ERA-Interim datasets as observations. For both the model and

observational data, we use a lagged-embedding window of ∆t = 24 months.

4.4.1 CCSM3 Modes

We choose ε, the Gaussian locality parameter, as ε = 0.90. Using the spectral

entropy criterion of Giannakis and Majda (2012a, 2013), we select a truncation

level of l = 27 eigenfunctions, and express the data matrices XSIC, XSST, and

XSLP in this basis. SVD of the resulting operators (the Al operators, as defined
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in Chapter 2) yields a set of spatiotemporal patterns, {uSICn }, {uSSTn }, {uSLPn },

and a set of temporal patterns, {vSICn }, {vSSTn }, {vSLPn }, for each variable. The

modes are ordered by decreasing singular value. In general, the temporal patterns

for different variables need not be related. However, by virtue of the relatively

low-dimensionality of the eigenfunction basis relative to the original temporal di-

mension (l = 27 � s = 10,800), and the fact that the eigenfunctions incorporate

information from all three variables, we find strong correlations between the tem-

poral patterns of different variables.

Temporal Modes

Figures 4.3, 4.4, and 4.5 show selected temporal patterns for SIC, SST, and

SLP, respectively. For each variable, we observe three distinct types of temporal

modes: periodic, low-frequency, and intermittent modes, indicated by P , L, and I

in the figures.

The periodic temporal modes closely resemble sinusoids, with frequencies given

by integer multiples of 1 yr−1. These modes appear as doubly degenerate pairs,

with a phase offset of π/2. The leading periodic modes, representing the annual and

semiannual cycles, capture more variance than the low-frequency and intermittent

modes of the system. Higher harmonic periodic modes are found later in the mode

spectrum. The low-frequency modes are characterized by significant interannual

variability, and have a typical decorrelation time of approximately 3 years. These

modes carry significant spectral power at frequencies below 1 yr−1, and exhibit a

sharp decline in spectral power at frequencies above this.

The intermittent modes are characterized by periods of intense activity followed

by periods of quiescence. Each intermittent mode has a base frequency of oscilla-
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Figure 4.3: Snapshots of the time series, power spectral density, and autocorre-
lation functions for the CCSM3 SIC PCs (vk) from coupled NLSA. Shown here
for 50-year portions of the 900-yr time series are the annual periodic (P SIC

1 ) and
semiannual periodic (P SIC

3 ) modes, low-frequency modes (LSIC
1 and LSIC

2 ), annual
intermittent modes (ISIC1 and ISIC3 ), and semiannual intermittent modes (ISIC7 and
ISIC9 ). The autocorrelation vertical scale is [-1,1].
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Figure 4.4: Snapshots of the time series, power spectral density, and autocorre-
lation functions for the CCSM3 SST PCs from coupled NLSA. Shown here are
the annual periodic (P SST

1 ) and semiannual periodic (P SST
3 ) modes, low-frequency

modes (LSST
1 , LSST

2 , and LSST
3 ), annual intermittent modes (ISST1 and ISST3 ), and

semiannual intermittent modes (ISST7 ). The autocorrelation vertical scale is [-1,1].
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Figure 4.5: Snapshots of the time series, power spectral density, and autocorre-
lation functions for the CCSM3 SLP PCs from coupled NLSA. Shown here are
the annual periodic (P SLP

1 ) and semiannual periodic (P SLP
3 ) modes, low-frequency

modes (LSLP
1 , LSLP

2 , LSLP
3 ), and intermittent modes (ISLP1 , ISLP3 ,ISLP7 ). The auto-

correlation vertical scale is [-1,1].
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Figure 4.6: Correlations between low-frequency modes and envelope functions for
intermittent modes. Mode pairs with large positive correlations indicate that the
low-frequency mode provides the modulating envelope for the intermittent mode.
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tion, and a broadband peak in spectral power centered upon this frequency. These

modes carry lower variance than their periodic and low-frequency counterparts, yet

have potentially high dynamical significance. For example, annual and semiannual

intermittent modes are crucial components in low-dimensional descriptions of sea-

ice reemergence phenomena (Chapter 3). Note that the leading low-frequency and

intermittent modes are insensitive to truncation level, whereas increasing l will

eventually disrupt the temporal character of some intermittent modes.

Intermittent modes closely resemble a periodic signal modulated by a low-

frequency envelope. We find that nearly all intermittent modes can be directly

associated with a particular low-frequency mode, which provides this modulating

envelope (Chapter 3). To determine this association we compare the envelope

function of the intermittent modes to the low-frequency modes. We find the en-

velope function via the Hilbert transform (von Storch and Zwiers, 1999). Let

I(t) be a given intermittent mode and let H(I)(t) be the Hilbert transform of I.

Then the envelope function, e(t), is given by e(t) =
√
I(t)2 +H(I)(t)2. Next,

we determine which low-frequency mode provides this modulating envelope by

performing a correlation between e(t) and |L(t)|, where L(t) is a low-frequency

mode. Fig. 4.6 shows these correlation values for intermittent and low-frequency

modes of each variable, for both the model and observations. Note that the low-

frequency-intermittent mode association is quite clear for most variables, except

for the observational SLP, whose intermittent envelopes generally correlate weakly

with the low-frequency modes.

As a comparison, we also performed SSA on the concatenated and unit-variance

normalized SIC-SST-SLP dataset. Similar to the findings of Chapter 3, SSA pro-

duces periodic modes, many low-frequency modes, and some modes that loosely
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resemble the intermittent modes of NLSA, with a spectral maximum at a certain

base frequency. We find that the SSA modes do not share the same intermittent–

low-frequency mode relationships as the NLSA modes. These relationships will be

important for explaining reemergence, as they reflect the interaction of large-scale

low-frequency modes of variability with the familiar annual and semiannual cycles

in the climate system.

SIC Spatiotemporal Patterns

Figure 4.7 shows spatial patterns of selected modes at a snapshot in time.

Movies 8 and 9, in the online supplementary material, show the spatiotemporal

evolution of these modes and others. Below, we describe the prominent features

of the spatiotemporal modes recovered for SIC, SST, and SLP.

The annual periodic SIC modes, {P SIC
1 , P SIC

2 } (Fig. 4.7a), have spatially uni-

form anomalies throughout most of the Arctic, except at high-latitude gridpoints

where there is year-round ice coverage, and in the marginal ice zones, where the

anomalies are slightly weaker. These anomalies reach their maximum and mini-

mum values in March and September, respectively. The higher-frequency periodic

modes have increasingly finer spatial structure, and capture a decreasing portion

of the variance.

The low-frequency modes closely resemble the leading EOFs of Arctic SIC in

the CCSM3 model. LSIC
1 (Fig. 4.7d) exhibits anomalies in the Bering, Beaufort, and

Labrador Seas, which are out-of-phase with the anomalies of the Barents, Kara, and

Greenland Seas. Computing pattern correlations between the q spatial patterns

of LSIC
1 and the different EOFs of deseasonalized Arctic SIC, we find a maximum

pattern correlation of 0.97 with EOF 1. LSIC
2 (Fig. 4.7g) has strong anomalies in
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the Bering and Labrador Seas, which are out-of-phase with one another. It also has

weaker anomalies in the Sea of Okhotsk, Barents and Kara seas which are in-phase

with the Bering Sea anomalies. This mode has a maximum pattern correlation of

0.77 with EOF 3.

Each intermittent mode has a natural association with a certain low-frequency

mode, which acts as a modulating envelope for the intermittent mode. There is

also a clear spatial connection, as the intermittent modes are active in the same

parts of the domain as their low-frequency counterpart. The annual and semi-

annual intermittent mode pairs, {ISIC1 , ISIC2 } and {ISIC7 , ISIC8 }, are associated with

LSIC
1 (see Fig. 4.6). These modes pulse with annual and semiannual frequency,

respectively, and exhibit finer spatial structure than LSIC
1 . In regions where LSIC

1

has monopole anomalies, these intermittent modes have dipole and tripole anoma-

lies, respectively. The annual and semiannual intermittent modes, {ISIC3 , ISIC4 } and

{ISIC9 , ISIC10 , ISIC11 }, are associated with LSIC
2 , and share similar spatial relationships.

SST Spatiotemporal Patterns

LSST
1 (Fig. 4.7e) has strong anomalies in the Bering Sea that extend southward

into the Northeast Pacific, and anomalies of the opposite sign in the Barents and

Kara Seas. There is also a North Atlantic signal with anomalies in the subpolar

gyre region that are in-phase with the North Pacific anomalies. This mode has

a maximum pattern correlation of 0.98 with EOF 1 of Arctic SST from CCSM3.

LSST
2 (Fig. 4.7h) exhibits out-of-phase anomalies between the North Pacific and

North Atlantic. The North Atlantic anomalies correspond to variability in the

subpolar gyre, and the North Pacific anomalies are strongest in the Bering Sea,

extending through most of the Pacific portion of the domain. This mode is most

93



similar to EOF 2, with 0.96 pattern correlation.

The intermittent modes associated with LSST
1 and LSST

2 are {ISST1 , ISST2 , ISST8 , ISST9 }

and {ISST5 , ISST6 , ISST11 }, respectively. As with the SIC modes, these modes are ac-

tive in the same parts of the domain as their associated low-frequency mode, and

have finer spatial structure. A primary difference is that these intermittent modes

exhibit spatially propagating anomalies, as compared with their stationary SIC

counterparts. This propagation is most evident in the subpolar gyre region of the

North Atlantic.

SLP Spatiotemporal Patterns

LSLP
1 (Fig. 4.7f) has a similar SLP pattern to the AO, with an anomaly centered

over the pole, and anomalies of opposite sign in the North Atlantic and North

Pacific basins. The AO is defined as the leading EOF of SLP north of 20◦N.

Considering EOFs of CCSM3 SLP north of 20◦N, we find a maximum pattern

correlation of 0.98 with EOF 1. In light of this strong correlation, we call LSLP
1

the AO mode. LSLP
2 also closely resembles the AO, with a maximum pattern

correlation of 0.98 with EOF 1. However, LSLP
1 and LSLP

2 have distinct temporal

patterns and are non-degenerate modes.

LSLP
3 (Fig. 4.7i) has a strong resemblance to the DA, which consists of opposite-

signed SLP anomalies between the Eastern and Western Arctic. Following Wu

et al. (2006), we define the dipole anomaly as the second leading EOF of winter

(October-March) SLP north of 70◦N. Let PC 2 be the PC associated with EOF

2. To determine the corresponding spatial pattern over the Arctic domain (north

of 45◦N), we project winter Arctic SLP onto PC 2, and compare the resulting

spatial pattern to LSLP
3 . We find a maximum pattern correlation of 0.78, and lower
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Figure 4.7: Spatial patterns of selected sea ice, SST, and SLP NLSA modes. For
each mode, we plot the spatial pattern with largest variance (of the q spatial
patterns that make up the spatiotemporal pattern). Rows 1-3 show CCSM3 modes
and row 4 shows observational modes, indicated by an O subscript. The fields have
been normalized to have a maximum absolute value of 1.
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correlations when other PCs are used. Another possible technique for determining

the Arctic SLP signal of the DA, as performed in Wu et al. (2006), is to perform a

conditional composite, based on the months in which PC 2 is active. This yields a

very similar pattern correlation of 0.77 with LSLP
3 . Wu et al. (2006) also perform

a conditional composite in which the influence of the AO is removed via linear

regression. We also computed a spatial pattern using this technique and found a

pattern correlation of 0.78 with LSLP
3 . Based on these findings, we refer to LSLP

3 as

the DA mode.

LSLP
1 has associated annual and semiannual intermittent modes {ISLP1 , ISLP2 ,-

ISLP9 , ISLP10 }. LSLP
3 is associated with a pair of annual intermittent modes {ISLP7 ,-

ISLP8 }, but not any semiannual intermittent modes.

4.4.2 Observational Modes

We compute the coupled NLSA observational modes using a locality parameter

of ε = 1.20 and a truncation level of l = 21 eigenfunctions. A primary difference

between the observational modes and CCSM3 modes is the variables used for the

eigenfunction computation. We find that computing SIC-SST-SLP eigenfunctions

from the observational datasets yields temporal modes which are significantly nois-

ier (more high-frequency power) than the corresponding modes from CCSM3. This

corruption occurs due to the inclusion of the SLP data in the eigenfunction compu-

tation. We find that the eigenfunctions are substantially cleaner when computed

using SIC and SST, and we use this as the base case for this chapter. On the

other hand, the CCSM3 results are insensitive to the inclusion of SLP, with SIC-

SST-SLP and SIC-SST eigenfunctions yielding very similar modes and conclusions

regarding sea-ice reemergence. We obtain SLP observational modes by projecting
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the SLP data onto the SIC-SST eigenfunctions and performing an SVD of the

resulting operator. Note that the observational SLP data is roughly 4 times finer

spatial resolution than the CCSM3 SLP data. This discrepancy in resolution may

explain the corruption in observational modes compared with CCSM3 modes. An

NLSA kernel that incorporates an initial spatial smoothing of the input data (mak-

ing them comparable to the T42 resolution of the CCSM3 data) could alleviate

these issues, but we elected not to carry out these calculations since we are able

to identify reemergence families, ahead, using SIC and SST only as inputs to the

kernel.

The observational temporal modes have a similar character to those obtained

from CCSM3. For each variable, we find periodic, low-frequency, and intermittent

modes, and in many cases the low-frequency modes act as modulating envelopes

for the intermittent modes. The temporal modes for SIC, SST, and SLP are shown

in Figs. 4.8, 4.9, and 4.10.

Next, we provide a brief description of the spatiotemporal modes that will

be discussed later in the paper. Movies 10 and 11 of the supplementary material

provide a more revealing spatiotemporal evolution of these modes and others. LSIC
1

(Fig. 4.7j) closely resembles the leading EOF of winter Arctic sea ice reported by

Deser et al. (2000). In its positive phase, LSIC
1 has positive sea-ice anomalies in

the Labrador and Bering seas and negative anomalies in the Greenland, Barents-

Kara, and Okhotsk Seas. This mode has a maximum pattern correlation of 0.88

with EOF 1 of Arctic sea ice from HadISST. LSST
1 (Fig. 4.7k) is most similar to

EOF 2 of Arctic SST, with a maximum pattern correlation of 0.70. In positive

phase, this mode has positive anomalies in the Labrador Sea and subpolar gyre

region, negative anomalies in the Barents-Kara Seas and positive anomalies in the
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Figure 4.8: Snapshots of the time series, power spectral density, and autocorrela-
tion functions for the HadISST SIC PCs (vk) from coupled NLSA. Shown here are
the annual periodic (P SIC

1 ) and semiannual periodic (P SIC
3 ) modes, low-frequency

modes (LSIC
1 and LSIC

2 ), annual intermittent modes (ISIC1 and ISIC3 ), and semiannual
intermittent modes (ISIC5 and ISIC7 ). The autocorrelation vertical scale is [-1,1].
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Figure 4.9: Snapshots of the time series, power spectral density, and autocorrela-
tion functions for the HadISST SST PCs (vk) from coupled NLSA. Shown here are
the annual periodic (P SST

1 ) and semiannual periodic (P SST
3 ) modes, low-frequency

modes (LSST
1 and LSST

2 ), annual intermittent modes (ISST1 and ISST3 ), and semi-
annual intermittent modes (ISST5 and ISST7 ). The autocorrelation vertical scale is
[-1,1].
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Figure 4.10: Snapshots of the time series, power spectral density, and autocor-
relation functions for the Era-Interim SLP PCs (vk) from coupled NLSA. Shown
here are the annual periodic (P SLP

1 ) and semiannual periodic (P SLP
3 ) modes, low-

frequency modes (LSLP
1 and LSLP

2 ), annual intermittent modes (ISLP1 and ISLP3 ),
and semiannual intermittent modes (ISLP5 and ISLP7 ). The autocorrelation vertical
scale is [-1,1].
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Bering Sea. LSLP
1 (Fig. 4.7l) strongly resembles the annular structure of the AO.

Computing EOFs of ERA-Interim SLP north of 20◦N, we find a maximum pattern

correlation of 0.97 with EOF 1, the AO pattern. Similar to the CCSM3 results,

the intermittent modes are generally associated with a low-frequency mode, are

active in the same parts of the domain as this low-frequency mode, and display

finer spatial structure.

One feature which is conspicuously absent from the observational SLP modes

is a DA-like mode. Other fields, such as 850mb geopotential height and surface

winds, and smaller domains were tested, but a low-frequency DA mode analogous

to the CCSM3 results was not found. Certain modes obtained were quite transient,

and resembled the DA pattern at certain snapshots in time, but not persistently.

4.4.3 Interpretation of low-frequency SLP modes

The low-frequency SLP modes have spatial patterns that closely resemble the

familiar spatial patterns obtained via EOF analysis. However, their temporal be-

havior differs substantially. The low-frequency NLSA temporal modes have signifi-

cant one-year autocorrelation and carry most of their power at frequencies below 1

yr−1. This lies in sharp contrast to the PCs obtained via EOF analysis, which have

a nearly white power spectrum and decorrelate very rapidly, losing all memory af-

ter 1-2 months. Despite these extremely different temporal characteristics, there

is natural connection between the two: the low-frequency NLSA modes closely

resemble a low-pass filtered version of the noisy PCs from EOF analysis.

This is illustrated in Fig. 4.11, which shows temporal behavior for LSLP
1 , the

leading low-frequency NLSA mode from CCSM3, PCSLP
1 , the principal component

corresponding to the leading EOF of SLP, and 〈PCSLP
1 〉, a low-pass filtered version
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Figure 4.11: Snapshots of the time series, power spectral density, and autocor-
relation functions for LSLP

1 , the leading low-frequency NLSA mode from CCSM3,
PCSLP

1 , the principal component corresponding to the leading EOF of SLP, and
〈PCSLP

1 〉, a low-pass filtered version of PCSLP
1 , computed by taking a 24 month

running mean. The red curve is 〈PCSLP
1 〉 plotted on top of PCSLP

1 . Note that the
〈PCSLP

1 〉 time series shown in the third row has been normalized to have a standard
deviation of 1.

of PCSLP
1 , computed by taking a 24 month running mean. LSLP

1 has a relatively low

correlation of 0.31 with PCSLP
1 , but a significantly higher correlation of 0.80 with

the low-pass filtered PC, 〈PCSLP
1 〉. LSLP

1 and 〈PCSLP
1 〉 share qualitatively similar

autocorrelation functions and power spectra, which are very different from the

rapidly decaying autocorrelation and nearly white power spectrum of PCSLP
1 . These

results suggest a natural interpretation of the low-frequency NLSA modes as low-

pass filtered versions of the PCs from EOF analysis, which emphasize variability

on interannual to decadal timescales and filter out higher-frequency variability. It

is important to note that the low-frequency NLSA modes have weak sensitivity

to the lag-embedding window ∆t (as long as ∆t > 12; see section 3). Also, a

univariate NLSA analysis with only SLP was performed, and similar low-frequency
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modes were recovered. This suggests that these low-frequency patterns describe

an intrinsic component of SLP variability, which in this case can be reproduced by

an ad-hoc running averaging of the data.

The observational SLP modes also display a similar correspondence, with a

correlation of 0.83 between 〈PCSLP
1 〉 and LSLP

1 . This high correlation indicates

that the SIC-SST eigenfunctions used for the observational data are able to capture

important variability in the raw SLP data.

4.5 Arctic sea-ice reemergence in models and ob-

servations

Sea-ice reemergence is a time-lagged correlation phenomenon. SIC anomalies

decorrelate over a 3-6 month timescale, however, at some time lag in the future,

an increase in correlation occurs. Sea-ice reemergence is observed in two forms:

a spring-fall reemergence, in which spring anomalies are reproduced the following

fall, and a fall-spring reemergence, in which fall anomalies are reproduced the fol-

lowing spring. Both forms are observed in CCSM3 model output and HadISST

observations, with the spring-fall reemergence being the significantly stronger sig-

nal in both cases.

We study sea-ice reemergence via the time-lagged pattern correlation method-

ology of Chapter 3. For each month of the year, pattern correlations are computed

between the SIC anomaly field of the given month and the SIC field at lags of 0

to 23 months into the future. This is done for all (month, month+lag) pairs in

the time series, and we report the average of these correlation values. Note that

the pattern correlations are performed on anomalies from the seasonal cycle, are
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area-weighted, and are uncentered (global mean has not been subtracted from the

anomaly field). This differs from the approach of Blanchard-Wrigglesworth et al.

(2011a), where the lagged correlations were performed using a time series of total

sea-ice area. Performing correlations using the full SIC field, as opposed to its

total area, allows for inclusion of the spatial distribution of sea ice. The pattern

correlation approach is able to detect opposite-signed anomaly features, such as

sea-ice dipoles, which would be integrated away in the total area approach. It

also enforces a notion of locality, since anomalies must be spatially coincident in

order to yield a significant pattern correlation. This ensures that a reported sea-ice

reemergence signal represents recurrent anomalies at the same spatial location.

In this paper, we focus on the regions defined in Fig. 4.1: a pan-Arctic domain

(0◦ – 360◦ and 45◦N – 90◦N), the Barents and Kara Seas (30◦E – 90◦E and 65◦N

– 80◦N), the Labrador Sea and Baffin Bay (70◦W – 40◦W and 45◦N – 80◦N), the

Greenland Sea (40◦W – 0◦E and 55◦N – 80◦N), the Bering Sea (165◦E – 160◦W

and 55◦N – 65◦N), and the Sea of Okhotsk (135◦E – 165◦E and 45◦N – 65◦N).

4.5.1 Regional sea-ice reemergence in models and observa-

tions

We begin with a regional study of sea-ice reemergence using raw SIC data

from HadISST observations and CCSM3 output, the results of which are shown in

Fig. 4.12. This figure shows time-lagged pattern correlations, computed for all ini-

tial months and lags of 0 to 23 months. All correlations plotted in color are greater

than 0.1 and are significant at the 95% level, based on a t-distribution statistic,

which tests for the statistical significance of the time-mean pattern correlation

values against a null hypothesis that there is no correlation.
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Over a pan-Arctic domain, in both the model and observations, we observe a

clear “summer limb” of positive correlations corresponding to sea-ice anomalies

that originate in the melt season (March-August) and reemerge in the growth sea-

son (Fig. 4.12a,b). The “winter limb” of fall-spring reemergence, corresponding

to anomalies originating in September-February, is weak over the Arctic domain,

except for a small hint of the limb in the CCSM3 data. An interesting conse-

quence of the time-lagged pattern correlation approach is the striking similarity

of pan-Arctic lagged correlations in CCSM3 and observations. This lies in con-

trast to the total area lagged correlation methodology of previous studies, which

reveal a clearly enhanced reemergence signal in the model relative to observations

(Blanchard-Wrigglesworth et al., 2011a; Day et al., 2014b). This indicates that,

despite differences in memory of total sea-ice area anomalies, the model and ob-

servations are quite similar in their memory of sea-ice spatial patterns.

The pan-Arctic reemergence signal is similar in the model and observations,

however a regional analysis reveals significant differences between the two. Both

CCSM3 and HadISST have strong summer limb signals in the Barents-Kara do-

main (Fig. 4.12g,h) and the Greenland Sea (Fig. 4.12k,l). The CCSM3 data also

exhibits a winter limb in the Barents-Kara domain, which is not significant in

observations. A striking difference is found in the Labrador Sea, with a strong

summer limb and a significant winter limb in observations, neither of which are

found in the model (Fig. 4.12i,j). Conversely, the strong summer limbs in the

Bering and Okhotsk Seas found in the model data are absent in the observations

(Fig. 4.12c,d,e,f). Note that the winter limb signal in the Bering and Okhotsk

Seas should not be over-interpreted, as these domains are essentially sea-ice free

during the summer and early fall. Therefore, the North Pacific winter limb lagged
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Figure 4.12: Time-lagged pattern correlations of Arctic sea ice in different regions.
The left column shows results from CCSM3 model output, and the right column
shows results from HadISST observations. All colored boxes are significant at the
95% level, based on a t-test.

106



correlations are performed using an extremely low-variance signal, and are not

robust.

4.5.2 Sea-ice reemergence revealed via coupled NLSA

Given the non-trivial lagged correlation structures in the CCSM3 and HadISST

sea-ice datasets, we seek a low-dimensional representation of sea-ice reemergence

via the coupled NLSA modes obtained in Section 4. We aim to answer two main

questions: (1) Can the reemergence signal of the raw data be efficiently reproduced

by low-dimensional families of modes? (2) Can these mode families reveal possible

mechanisms for Arctic sea-ice reemergence? To answer the former, we perform

time-lagged pattern correlations using small subsets of reconstructed spatiotempo-

ral fields from coupled NLSA. Our approach here is to first construct families of

SIC modes, and then to augment these families with SST and SLP modes, based

on correlations.

CCSM3 Reemergence Families

Based on the associations between low-frequency and intermittent modes iden-

tified in section 4a.1, we construct two families of SIC modes, each consisting of a

low-frequency mode and annual and semiannual intermittent modes. These fam-

ilies, which we refer to as FM1 and FM2 , are able to qualitatively reproduce the

reemergence signal of the raw data. They are given by FM1 = {LSIC
1 , ISIC1 , ISIC2 ,-

ISIC7 , ISIC8 } and FM2 = {LSIC
2 , ISIC3 , ISIC4 , ISIC9 , ISIC10 , ISIC11 }. Here, the M superscript

indicates that these families come from model output. Each family is particularly

active in the Barents-Kara, Bering, and Labrador Seas, but shares different phase

relationships between the different regions. Within each family, the low-frequency
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and intermittent modes are closely related, in the sense that the low-frequency

mode provides the modulating envelope for the intermittent modes. This means

that all modes in a given family tend to be active or inactive at the same times.

Note that similar envelope associations were observed in the reemergence families

identified in Chapter 3, suggesting that this approach may be useful in a broader

context. Many other mode subsets were tested, but were unable to reproduce the

lagged correlation structure as effectively as these families, likely because they lack

the envelope relationships that characterize the families. Moreover, FM1 and FM2
appear to be the minimal mode subsets, as smaller sets are unable to qualitatively

reproduce the reemergence signal.

In Fig. 4.13d, we show time-lagged pattern correlations computed over the

Arctic domain using NLSA family FM1 . Comparing with the time-lagged pattern

correlation structure of the raw data, shown in Fig. 4.13a, we observe qualitatively

similar features. The FM1 correlations have a clear summer limb structure, with

correlations that decay to near zero over the summer months and reemerge the

following fall. They also have a slightly weaker winter limb, which may correspond

to the weaker fall-spring reemergence seen in the raw data. The FM1 correlations

are substantially higher than the raw data correlations because the family’s activity

is primarily governed by LSIC
1 , which has a decorrelation time of 3 years.

This NLSA family has a qualitatively similar correlation structure to the raw

data, yet it is natural to ask whether this family is capturing the portion of the

signal responsible for the summer limb in the raw data. As a method for addressing

this question, we compute time-lagged cross correlations between the raw data and

the NLSA subspaces, shown in Fig. 4.13b and 4.13c. To explain panels b and c,

we introduce LC(A,B), a function that computes time-lagged pattern correlations,
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Figure 4.13: Time lagged pattern correlations of sea ice computed over the Arctic
domain, using NLSA Familes FM1 and FM2 . Panels (A) and (D) show correlations
of the raw data and FM1 , respectively. Panels (B) and (C) show cross-correlations
of FM1 and the raw data, with the NLSA data lagging and leading, respectively.
The same correlations for FM2 are shown in panels (E)-(H). All colored boxes are
significant at the 95% level.
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with the dataset B lagging A. Using this notation, Fig. 4.13a shows LC(Raw,Raw)

and Fig. 4.13d shows LC(FM1 ,FM1 ). In Fig. 4.13b and 4.13c, we plot LC(Raw,FM1 )

and LC(FM1 ,Raw), respectively.

If the reemergence signal of FM1 is not representative of the signal in the raw

data, one would expect these cross correlations to be small. However, we observe

strong summer limbs in panels 4.13b and 4.13c, similar to the correlation structure

of the raw data. The fact that these panels are similar to panel 4.13a, indicates

that family FM1 is capturing the portion of the data responsible for the sea-ice

reemergence signal.

In Fig. 4.13e-h, we plot the same quantities as Fig. 4.13a-d, but for Family FM2 .

LC(FM2 ,FM2 ) also has a strong summer limb and a weaker winter limb, but each

of these limbs is weaker than their respective counterparts in LC(FM1 ,FM1 ). Also,

LC(Raw,FM2 ) and LC(FM2 ,Raw), plotted in Fig. 4.13f and 4.13g, shows partial

summer limbs, but these correlations are weaker than the reemergence signal of

the raw data. This indicates that family FM2 is capturing some of the reemergence

signal, but not as significant a portion as family FM1 .

HadISST Reemergence Families

The observational modes also admit a mode family which is able to repro-

duce the reemergence signal of the raw HadISST data. This family is given

by FO1 = {LSIC
1 , ISIC1 , ISIC2 , ISIC5 , ISIC6 }, where the O indicates observational data.

There is no clear second family which has non-trivial cross-correlations with the

raw observational data. In Fig. 4.14 we plot time-lagged cross correlations for FO1 .

LC(FO1 ,FO1 ) has a clear summer limb and a weaker winter limb. We also find

a strong summer limb structure in LC(Raw,FO1 ) and LC(FO1 ,Raw), except for
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Figure 4.14: Time lagged pattern correlations of sea ice computed over the Arctic
domain, using HadISST Family FO1 . Panels (A) and (D) show correlations of the
raw data and NLSA Family FO1 , respectively. Panels (B) and (C) show cross-
correlations of FO1 and the raw data, with the NLSA data lagging and leading,
respectively. All colored boxes are significant at the 95% level.

a small gap in the limb for anomalies beginning in July. This indicates that the

family FO1 is capturing a substantial portion of the reemergence signal in the raw

data.

4.5.3 Variance explained by reemergence families

Another way to test the effectiveness of the families in capturing the reemer-

gence signal is to directly subtract the families from the raw sea-ice data, and

compute time-lagged pattern correlations on the resulting dataset. Fig. 5.3c shows
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LC(Raw−FM1 −FM2 ,Raw−FM1 −FM2 ), and Fig. 5.3d shows LC(Raw−FO1 ,Raw−

FO1 ). Each of these has a clearly reduced summer limb relative to LC(Raw,Raw),

which are shown in Fig. 5.3a for CCSM3 and Fig. 5.3b for HadISST. This demon-

strates that the reemergence families are capturing a substantial portion of the

reemergence signal. In terms of total sea-ice area anomalies, family FM1 explains

41%, 25%, and 8% of the variance in the Bering, Barents-Kara, and Labrador Seas,

respectively. Similarly, FM2 explains 18%, 1%, and 14% of the variance, and FO1
explains 7%, 30%, and 18% of the variance, in these respective regions.

The variance explained by these families is lower if one considers the full (non-

integrated) sea-ice anomaly field. Over the full Arctic domain family FM1 explains

5% of the variance, FM2 explains 3% and FO1 explains 7%. While these values seem

somewhat low, it is interesting to note that the leading two EOFs from CCSM3

capture 7% and 6% of the variance, respectively. These values are lower than

those typically reported in EOF studies for three reasons: (1) the spatial domain

is large; (2) there has been no temporal smoothing or averaging performed; and (3)

the spatial resolution is relatively fine. For example, the leading EOF of Deser et al.

(2000) captures 35% of the sea-ice variance in the Arctic, but this is based on a

time series of winter mean sea-ice anomalies. This temporal averaging substantially

smooths the data, and the leading EOF captures variance more efficiently in this

time-filtered dataset. By contrast, the leading 10 EOFs of CCSM3 Arctic sea ice

capture 38% of the variance.

The comparison with SSA, a variance greedy algorithm, is also illuminating.

The leading two SSA modes capture 2.5% and 2% of the variance, respectively,

and the leading 10 non-periodic SSA modes capture 14% of the variance. By

comparison, the leading 10 non-periodic NLSA modes capture 10% of the variance,
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which is modestly less than SSA. The main reason for this discrepancy is that

the intermittent modes of NLSA carry less variance than low-frequency modes.

Despite being low-variance, these intermittent modes are crucial components of

the reemergence families and illustrate an important point: low-variance modes

can play an important role in explaining dynamical phenomena.

4.5.4 Temporal variability of sea-ice reemergence

To this point, all reported lagged correlations have been time-mean values,

computed over the full time series. Next, we consider the time-dependent aspects

of sea-ice reemergence. Fig. 5.3e shows lagged correlations of the raw CCSM3 sea-

ice data, conditional on the low-frequency modes of FM1 or FM2 , LSIC
1 and LSIC

2 ,

being active. Specifically, we condition on all times for which |LSIC
1 (t)| > 2 or

|LSIC
2 (t)| > 2 (which corresponds to 11% of the data). Similarly, Fig. 5.3f shows

lagged correlations of the raw HadISST data conditional on the low-frequency

mode of FO1 being active (|LSIC
1 (t)| > 1.5, which corresponds to 14% of the data).

We observe a clearly enhanced reemergence signal (both summer and winter limbs)

during times when these modes are active. Figs. 5.3g and 5.3h show lagged corre-

lations conditional on these modes being inactive (|LSIC
1 (t)| < 1 and |LSIC

2 (t)| < 1

for CCSM3 and |LSIC
1 (t)| < 1 for HadISST). This corresponds to 45% and 59%

of the data, respectively. In both cases, particularly with CCSM3, we observe

a diminished reemergence signal. These results indicate that reemergence events

have significant temporal variability, characterized by regimes of quiescence and

other regimes of intense activity. Another notable feature is the robust initial de-

cay of correlation for lags of 0–3 months. The most significant differences between

Figs. 5.3e,f and Figs. 5.3g,h occur at lags greater than 3 months, indicating that
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reemergence events display more temporal variability than the initial decay of per-

sistence. Note that due to the shortness of observational record, the conditional

correlations from HadISST are less robust than those from CCSM3.

In CCSM3, about half of the record is characterized by a very weak reemergence

signal (Fig. 5.3g), whereas other times exhibit strong reemergence (Fig. 5.3e).

This may have important implications for sea-ice predictability, since predictability

resulting from reemergence will have a strong temporal dependence, dependent on

the strength of the reemergence signal at a given time. The results here also

demonstrate the efficacy of certain low-frequency NLSA modes as predictors for

the strength of reemergence events. Therefore, these modes could be a valuable

addition to statistical sea-ice forecast models.

As another method to test the temporal variability of reemergence events, we

measure the strength of the reemergence signal as a function of time. We define

the reemergence strength as the sum of correlation values along the summer limb,

compute this quantity for each year of the time series, and create a probability

density function (PDF). The PDF (not shown here) is close to Gaussian, with a

slight skew towards large reemergence events. If we let µ be the mean of the PDF,

we find that 23% of reemergence events are less that 0.5µ and 23% of events are

greater than 1.5µ. This spread in event distribution demonstrates that reemergence

strength fluctuates strongly in time.

This temporal characterization of Arctic reemergence events is a new result of

this study, which was inaccessible in previous studies of reemergence based on time-

lagged total area correlations. In the time-lagged pattern correlation methodology,

correlations are performed space, rather than time, which allows for the temporal

variations of these correlations to be studied. The mode families also allow for an
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Figure 4.15: Time lagged patterns correlations of sea ice computed over the Arctic
domain. Lagged correlations for CCSM3 data are shown for: (A) the raw data, (C)
Raw − FM1 − FM2 , (E) conditional on |LSIC

1 (t)| > 2 or |LSIC
2 (t)| > 2 (which corre-

sponds to 11% of the data) and (G) conditional on |LSIC
1 (t)| < 1 and |LSIC

2 (t)| < 1
(45% of the data). HadISST lagged correlations are shown for: (B) the raw data,
(D) Raw − FO1 , (F) conditional on |LSIC

1 (t)| > 1.5 (which corresponds to 14% of
the data) and (H) conditional on |LSIC

1 (t)| < 1 (59% of the data).

115



investigation of the temporal variability of reemergence events and mechanisms,

and this will be returned to in section 6c, ahead.

4.5.5 SIC-SST-SLP reemergence families

We have identified families of coupled NLSA SIC modes which are able to

reproduce the reemergence signal of the raw SIC data. Next, we focus on the

spatiotemporal evolution of these families, and their associated SST and SLP pat-

terns. As noted earlier, there are strong correlations between the temporal modes

of SIC, SST, and SLP. We use this fact to augment the families FM1 , FM2 , and FO1
with associated SST and SLP modes.

The low-frequency mode of FM1 is LSIC
1 . Performing correlations between this

mode and all low-frequency SST and SLP PCs, we find maximum correlations

of -0.99 with LSST
1 and -0.69 with LSLP

3 . Similarly, for the LSIC
2 mode of FM2 ,

we find maximum correlations of -0.93 with LSST
2 and 0.64 with LSLP

1 . For the

observational family, FO1 , we find that LSIC
1 has maximum correlations of 0.998

with LSST
1 and -0.81 with LSLP

1 . Note that the low-frequency mode correlations

are higher between SIC and SST than between SIC and SLP, indicating that the

temporal co-variability between SIC and SST is somewhat stronger.

Each family consists of a low-frequency mode and associated annual and semi-

annual intermittent modes. In order to form the augmented families, we identify

the intermittent modes associated with the low-frequency SST and SLP modes

identified above. Based on the envelope correlations shown in Fig. 4.6, we define

the following augmented families:

FM1 = {LSIC
1 , ISIC{1,2,7,8}, L

SST
1 , ISST{2,3,8,9}, L

SLP
3 , ISLP{7,8}},

116



FM2 = {LSIC
2 , ISIC{3,4,9,10,11}, L

SST
2 , ISST{5,6,11}, L

SLP
1 , ISLP{1,2,9,10}},

FO1 = {LSIC
1 , ISIC{1,2,5,6}, L

SST
1 , ISST{1,2,7,8}, L

SLP
1 , ISLP{1} }.

Here, the intermittent mode indices are given in braces for each variable.

4.6 Sea-ice reemergence mechanisms

4.6.1 SST–sea-ice reemergence mechanism

We now examine the sea-ice reemergence mechanisms suggested by the SIC-

SST-SLP families defined above. Chapter 3 showed that low-dimensional families

of NLSA modes produce an SST–sea-ice reemergence mechanism in the North

Pacific sector which is consistent with that proposed by Blanchard-Wrigglesworth

et al. (2011a). Can a similar mechanism be observed in Arctic NLSA modes? In

both the model and observations, the answer is yes.

Figure 4.16 shows spatial reconstructions of SIC, SST, and SLP using family

FM1 . These spatial patterns are composites, produced by averaging over all times

where LSIC
1 (t) > 1 (which corresponds to 17% of the data). Similar patterns, with

opposite sign, are obtained by compositing over times when LSIC
1 (t) is in negative

phase. This figure shows four months of the year, but the time evolution of FM1 ,

shown in Movie 12 of the supplementary material, is much more illuminating.

In the winter months of January–March, we observe strong negative sea-ice

anomalies in the Barents Sea and strong positive anomalies in the Bering and

Labrador Seas. These anomalies reach their maximum southerly extent in March.

We observe SST anomalies of opposite sign, which are roughly spatially coincident

with the sea-ice anomalies, but also extend further south in each of the three
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Figure 4.16: Sea ice, SST, and SLP patterns of CCSM3 reemergence Family FM1
at different months of the year. These spatial patterns are composites, obtained
by averaging over all years in which LSIC

1 > 1.
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seas. Note that in March the Kara sea, the northern Bering Sea and the northern

Labrador Sea are all SST anomaly-free. The ice anomalies move northward and

weaken over the melt season, which begins in April. In June, the ice anomalies in

the Barents-Kara region are located primarily in the Kara sea. Also, the Bering

and Labrador anomalies have moved into the northern parts of these seas and

weakened substantially.

As the ice anomalies move northward, they imprint an anomaly of opposite

sign in the SST field. In particular, the previously anomaly-free Kara and north-

ern Bering and Labrador Seas now have strong SST anomalies. The ice continues to

retreat northwards over the melt season, reaching its minimum extent in Septem-

ber. In September the sea-ice anomalies are extremely weak in the Barents-Kara,

Bering, and Labrador Seas, yet each of these seas has retained an SST anomaly.

The SST anomaly retained in the Barents-Kara and Bering Seas is particularly

strong, with a weaker anomaly in the Labrador Sea. As the growth season begins,

the ice moves southward, interacts with the SST anomalies that have been stored

over the summer months, and reinherits anomalies of the same sign as the previous

spring. In December, we observe that most of the summer imprinted SST anoma-

lies have disappeared, and the sea-ice anomalies have reemerged with the same

sign as the spring anomalies. This reemergence family is typically active for a 2-8

year period, during which we observe reemerging sea-ice anomalies of a consistent

sign (see Movie 12).

We observe a similar SST–sea-ice reemergence mechanism in family FM2 , shown

in Fig. 4.17 and Movie 13 of the supplementary material. This figure is based on a

composite over all times in which LSIC
2 > 1 (which corresponds to 16% of the data).

This family exhibits strong winter sea-ice anomalies in the Bering and Labrador
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Figure 4.17: Sea ice, SST, and SLP patterns of CCSM3 reemergence Family FM2
at different months of the year. These spatial patterns are composites, obtained
by averaging over all years in which LSIC

2 > 1.
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Figure 4.18: Sea ice, SST, and SLP patterns of HadISST reemergence Family FO1
shown for different months of 1991.
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Seas, which are out of phase with each other. These anomalies disappear over the

melt season, leaving an SST imprint in the northern parts of these seas in June

and September. We observe a sea-ice reemergence during the growth season, as

the SST anomalies are converted into ice anomalies. This family does not have a

strong signal in the Barents-Kara Seas.

The observational family, FO1 , displays a clear sea-ice reemergence, which is

active primarily in the Barents-Kara, Bering, Okhotsk, Labrador, and Greenland

Seas (Movie 14). This family, shown for the year 1991 in Fig. 4.18, also displays the

SST–sea-ice reemergence mechanism, but in a slightly less clean manner than the

model output. FO1 has positive winter sea-ice anomalies in the Bering and Labrador

Seas, and negative anomalies in the Barents-Kara, Greenland and Okhotsk Seas.

The family has winter SST anomalies of opposite sign to these sea-ice anomalies,

which extend southward of the sea-ice anomalies. Comparing the March panels

to the June and September panels, an SST imprinting can be observed in the

Barents-Kara Sea and, to a lesser extent, the Labrador and Bering Seas. Sea-ice

anomalies of the same sign reappear in the fall, and this pattern roughly repeats

the following year.

The reemergence families are able to capture the SST–sea-ice mechanism of

Blanchard-Wrigglesworth et al. (2011a), previously only accessible via time cor-

relation analysis of raw sea-ice and SST fields. This mode-based representation

of reemergence allows one to track the temporal variability and strength of the

SST–sea-ice reemergence mechanism, as will be done ahead in section 6c. Also,

the low-dimensionality of these families has implications for predictability, since a

small number of predictors (specifically, the low-frequency modes of the families)

define the amplitude and sign of reemergence events.
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4.6.2 Sea-ice teleconnections and reemergence via low-frequency

SLP variability

Movies 12-14 reveal consistent phase relationships between sea-ice anomalies

in the Barents-Kara, Bering, and Labrador Seas. The SST mechanism described

above provides a local mechanism for sea-ice reemergence, but does not explain

this phase-locking between geographically disconnected seas. We find that the SLP

patterns of FM1 , FM2 , and FO1 (shown in the third column of Figs. 4.16, 4.17, and

4.18) provide pan-Arctic scale teleconnections between these different regions.

We begin with family FM1 (Fig. 4.16), which has an SLP pattern closely re-

sembling the DA. This pattern is characterized by four main centers of action:

pressure anomalies of the same sign over Greenland and Northwest North Amer-

ica and opposite-signed anomalies over Western Russia and Eastern Siberia. The

geostrophic winds associated with this SLP pattern are primarily meridional, blow-

ing across the Arctic from the Bering to the Barents-Kara Seas, or vice versa. We

find that the ice advection and surface air temperature advection associated with

these large-scale winds is consistent with the observed phase relationships in re-

gional sea-ice anomalies.

From January–March, the dipole anomaly is very active, with strong northerly

winds over the Bering Sea and strong southerly winds over the Barents-Kara Seas.

The northerly winds advect cold Arctic air over the Bering Sea and also push the

ice edge southwards and advect additional ice into the sea. Each of these effects en-

courages the formation of a positive sea-ice anomaly in the Bering Sea. Similarly,

the Barents-Kara Seas experience warm southerly winds, which melt additional

ice, and also push the ice edge northward, contributing to the observed nega-

123



tive sea-ice anomaly. Also, the SLP anomaly centered over Greenland produces

northerly geostrophic winds over the Labrador Sea, contributing to its positive sea-

ice anomalies for the same reasons. The SLP anomalies and corresponding winds

weaken substantially over the summer months, as do the sea-ice anomalies in each

of these regions. In October, the SLP anomalies begin to reappear with the same

sign and a similar spatial pattern to the previous winter. This coincides with the

beginning of the sea-ice growth season and the reemergence of ice anomalies from

the previous spring. In December, we observe a strong dipole SLP anomaly, and,

again, observe sea-ice anomalies in the Bering, Barents-Kara and Labrador Seas,

which are physically consistent with this pattern.

Besides explaining the observed teleconnection in sea-ice anomalies, these SLP

patterns also suggest an SLP–sea-ice reemergence mechanism via their winter-to-

winter regime persistence. LSLP
3 , the low-frequency SLP mode of FM1 , has a strong

one-year autocorrelation of 0.70. Because SLP anomalies produce a significant sea-

ice response, recurring SLP patterns will produce recurring sea-ice patterns. Thus,

the observed winter-to-winter persistence of the SLP patterns of FM1 provides a

candidate mechanism for sea-ice reemergence.

As mentioned earlier in section 4c, the SLP patterns of FM1 represent a low-

pass filtered version of the full atmospheric signal. The SLP patterns of FM1 should

be thought of as a slowly evolving atmospheric circulation regime, rather than a

snapshot of the full SLP field at each point in time. For example, the temporal

evolution of the full SLP field is similar to the time series of PCSLP
1 in Fig. 4.11,

whereas the SLP patterns of FM1 are similar to the low-pass filtered PC (red curve

in Fig. 4.11). It is the persistence of the atmospheric circulation regime of FM1
that provides a plausible mechanism for sea-ice reemergence. Sea-ice anomalies
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are known to have a persistence of 2-5 months (Blanchard-Wrigglesworth et al.,

2011a), therefore the sea-ice anomalies at a given time represent an integrated

response to earlier atmospheric and oceanic forcing. Given this, one would expect

that sea-ice anomalies are not strongly dependent on the chaotic month-to-month

fluctuations of the atmosphere, but are more dependent on a temporally smoothed

version of this fluctuating field. Therefore, the low-pass filtered SLP patterns of

FM1 provide a plausible physical link between atmospheric and sea-ice variability.

The study of Blanchard-Wrigglesworth et al. (2011a) dismisses SLP persistence as

a source of sea-ice reemergence because of the low one-month autocorrelation of

the SLP pattern that best explains changes in sea-ice extent. Here, we argue that

the low-frequency component of similar SLP patterns may play an important role

in sea-ice reemergence.

Similar relationships between sea-ice and SLP anomalies are also observed in

family FM2 (Fig. 4.17), which has an annular SLP pattern resembling the AO,

and a one-year autocorrelation of 0.41. Similar to FM1 , these SLP patterns are

strongly active over the winter months (October–March), and fairly inactive over

the summer months. The geostrophic winds of this pattern are primarily zonal, but

also have a meridional component, which affects sea ice via surface air temperature

advection. In January–March, there are northeasterly winds over the Bering Sea,

southeasterly winds over Labrador Sea, and northeasterly winds over the Barents-

Kara Seas, with corresponding positive, negative, and positive sea-ice anomalies,

respectively. The SLP anomalies become small over the summer months, and

reappear during the fall months with the same sign as the previous winter. With

the reappearance of these SLP anomalies, we observe an ice reemergence, which is

particularly strong in the Bering and Labrador Seas.
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The relationship between SLP and sea ice is somewhat less clear in the obser-

vations than in the model. Column three of Fig. 4.18 shows the FO1 SLP patterns

for 1991, a year when the family was active. In January–March, there is an AO-

like SLP pattern producing northerly winds over the Labrador Sea and southerly

winds over the Barents-Kara Seas. We observe corresponding positive and neg-

ative sea-ice anomalies in these seas, analogous to what was observed in FM2 .

However, the SLP patterns differ in the North Pacific. There is minimal advection

over the Bering Sea, as a high-pressure anomaly is centered directly over it. This

anomaly produces southerly winds over the Sea of Okhotsk, which are consistent

with the negative sea-ice anomaly. On the other hand, the SLP patterns do not

provide a clear explanation, in terms of meridional wind, for the positive Bering

sea-ice anomalies. Compared to FM2 , these SLP patterns do not decorrelate as

strongly over the summer months, and a negative SLP anomaly is retained over

the pole, which also shifts onto the Eurasian continent over the summer months.

The anomaly strengthens during the fall, producing similar winds and sea-ice pat-

terns to the previous winter. One notable difference between the observational

and model SLP families is the spatial stationarity of the SLP patterns. The SLP

patterns of FM1 and FM2 are relatively fixed in space and pulse on and off with

the annual cycle. The FO1 SLP patterns also pulse with the annual cycle, yet are

transient in space. The SLP centers-of-action advect substantially over the course

of a year.

Given the seemingly similar sea-ice anomalies of FM1 and FO1 , a natural question

is why these families have such different atmospheric patterns. A closer analysis

of the sea-ice variability of each family reveals clear differences between the two.

For each family, we compute the proportion of sea-ice variance in a given region,
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relative to the variance of the full Arctic domain. We find that FM1 contains

24% of its variance in the Bering Sea, 22% in the Barents-Kara Seas, and 8%

in the Labrador Sea. Conversely, FO1 contains 5% of its variance in the Bering

Sea, 35% in the Barents-Kara Seas, and 14% in the Labrador Sea. Therefore, the

dominant sea-ice feature of FM1 is the dipole between the Bering and Barents-Kara

Seas, whereas the dominant feature of FO1 is the dipole between the Labrador and

Barents-Kara Seas. The corresponding atmospheric circulation patterns of each

family act to reinforce these dominant sea-ice anomalies, and have significantly

different spatial patterns.

It should be noted that the data analysis approach employed here is capable

of identifying correlation, but not causality. In particular, we have not quanti-

fied the relative importance of the ocean and the atmosphere in producing sea-ice

reemergence. Also, we have identified SLP modes with interannual to decadal

variability, but have not provided a mechanism for this observed variability. We

speculate that, rather than intrinsic atmospheric variability, this low-frequency

variability of the atmosphere results from SST or sea-ice forcing. The genera-

tion of low-frequency atmospheric variability has been widely studied, with many

authors suggesting that extratropical and tropical SST anomalies are capable of

driving low-frequency variability in the atmosphere (Lau and Nath, 1990; Latif

and Barnett, 1994; Trenberth and Hurrell, 1994; Weng and Neelin, 1998; Selten

et al., 1999; Robertson et al., 2000; Kushnir et al., 2002; Czaja and Frankignoul,

2002). Other authors (e.g., Mysak and Venegas, 1998), have suggested that sea-ice

anomalies could drive low-frequency atmospheric patterns, but modeling studies

have suggested that the atmospheric response is quite weak compared with the

typical magnitude of atmospheric anomalies (Alexander et al., 2004; Magnusdottir
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et al., 2004). Therefore, we speculate that anomalous SST forcing is the most

likely candidate for the observed low-frequency SLP patterns, but more study is

required on this problem. These unanswered questions could be investigated in a

future study involving a hierarchy of GCM experiments.

4.6.3 Metrics for sea-ice reemergence

We now establish a set of reemergence metrics for sea ice, SST, and SLP, by

which one can judge the activity of sea-ice reemergence and associated mechanisms

in different regions. These metrics, computed for the reconstructed fields of each

family, quantify the intensity and sign of ice reemergence events. We focus on the

values of these metrics in the Bering, Barents-Kara, and Labrador Seas. The sea-ice

metric is defined as the integrated (area-weighted) SIC anomaly in a given region.

We define the SLP metric as the maximum value of the meridional geostrophic wind

over a given region. This is a proxy for the amount of warm/cold air advection and

northward/southward ice advection over a given region. The SST metric is defined

as the integrated (area-weighted) SST anomalies in the portion of the seas that

are imprinted by summer SST anomalies. Specifically, we compute the integrated

SST anomalies in the Kara sea (75◦E – 100◦E and 65◦N – 80◦N), the northern

Bering Sea (165◦E – 160◦W and 60◦N – 65◦N), and the northern Labrador Sea

(70◦W – 40◦W and 60◦N – 80◦N). It is helpful to compare the metrics, plotted

in Figs. 4.19–4.21, to Movies 12–14 which show the dynamical evolution of the

corresponding fields for the same time period.

Figure 4.19 shows FM1 metrics for 100 years of model output. We observe a

number of reemergence events, characterized by periods in which the sea-ice metric

is large, with consistent sign, over a number of successive winters. For example,
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Figure 4.19: Reemergence metrics for ice, SST and wind of family FM1 in the
Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice
reemergence. Active periods of reemergence are characterized by repeated years in
which these metrics are large (either positive or negative). Note that the SIC and
SST metrics have been normalized by their respective standard deviations. The
SLP metric is reported in m/s.
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notable periods of active reemergence occur during years 101–106, 128–131, 146–

155, and 175–179. The sea-ice phase relationships for this family are striking, with

strong positive correlation (0.95) between the Bering and the Labrador Seas and

strong anti-correlation (-0.95) between the Bering and Barents-Kara Seas. The

SST metric reveals the SST-sea-ice reemergence mechanism, as years with large

ice metrics have large SST metrics of the opposite sign (note the anti-correlation of

like-colored curves in panels A and B). During reemergence events, the SST met-

rics are close to zero in the winter months and grow large in the summer months as

the sea-ice anomalies imprint the SST field. These SST metrics also show a clear

in-phase relationship between the Bering and Labrador Seas and out-of-phase re-

lationship between the Bering and Barents-Kara Seas. The SLP metric is clearly

out-of-phase with the sea-ice metric, which illustrates the sea ice-SLP reemergence

mechanism, since positive (negative) meridional wind anomalies produce nega-

tive (positive) sea-ice anomalies. During reemergence events, in the Bering and

Labrador Seas, we observe that the SLP metric is large over the winter and close

to zero over the summer. In the Barents-Kara Sea, we observe more persistence, as

the family maintains its wind anomalies throughout an entire reemergence event.

Figure 4.20 shows the metrics for family FM2 . Again, we observe very strong

phase relationships in sea-ice anomalies, with in-phase anomalies between the

Barents-Kara and Bering Seas and out-of-phase anomalies between the Bering and

Labrador Seas. The SST metric displays strong SST–sea-ice reemergence mecha-

nisms in the Labrador and Bering Seas. Also, as noted in section 5c, there is not

a clear SST–sea-ice mechanism in the Barents-Kara Sea. The SLP metric has a

strong signal in the Labrador Sea, which is large in winter and small in summer,

and out-of-phase with the sea-ice anomalies. The SLP–sea-ice mechanism is less
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Figure 4.20: Reemergence metrics for ice, SST and wind of family FM2 in the
Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice
reemergence. Active periods of reemergence are characterized by repeated years
in which these metrics are large (either positive or negative).
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strong in the Barents-Kara and Bering Seas, yet we do observe persistent wind

anomalies which are out-of-phase with the sea-ice anomalies.

We show metrics for FO1 in Fig. 4.21. This family exhibits a strong SST–sea-ice

reemergence mechanism in the Barents-Kara Sea. The SST signal is very weak in

the Bering Sea, and in the Labrador Sea it tends to persist over periods of reemer-

gence, rather than being imprinted each summer. The wind anomalies in the

Labrador and Barents-Kara Seas are consistent with the sea ice-SLP reemergence

mechanism. As noted earlier, the Bering Sea wind anomalies are not consistent

with the sea-ice anomalies. Rather, we observe that the wind anomalies are incon-

sistent (in-phase) with the sea-ice anomalies.

4.6.4 Regional sea-ice relationships conditional on SLP modes

The reemergence families suggest a number of sea-ice teleconnections which

are related to large-scale SLP patterns. Are these regional teleconnections visible

in the raw SIC data? Are the teleconnections strengthened by conditioning on

certain low-frequency SLP modes being active? To answer these questions, we

select pairs of regions and compute lagged cross-correlations in total sea-ice area

anomalies of the raw data between these regions. Note that the cross-correlations

are obtained by computing a time series of sea-ice area anomalies for each region,

and performing lagged correlations between these two time series. Our choice of

regions and SLP modes is guided by the reemergence families. We consider the

regions and SLP pattern that display the strongest teleconnection for each family.

The results are shown in Fig. 4.22, for months of the year with sea-ice coverage

in the marginal ice zones (December–May) and for lags of -23 to 23 months. Panels

A and B show lagged cross-correlations between the Barents-Kara and Bering Seas
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Figure 4.21: Reemergence metrics for ice, SST and wind of family FO1 in the
Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice
reemergence. Active periods of reemergence are characterized by repeated years
in which these metrics are large (either positive or negative).
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Figure 4.22: Lagged correlations in sea-ice area anomalies between different seas.
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for the raw CCSM3 data and conditional on |LSLP
3 | > 1.5 (corresponds to 14% of

the data), respectively. This corresponds to the primary teleconnection of FM1 .

All correlations plotted in color are significant at the 95% level, based on a t-

distribution statistic. In the raw data, we observe negative correlations between

the Bering and Barents-Kara Seas, which are strongest at lags of -6 to 6 months.

There is a dramatic strengthening of these negative correlations when conditioned

on an active LSLP
3 mode (the DA mode). We also observe that the correlations are

more persistent when the DA mode is active. Another interesting feature is the

clear bias in correlations towards lags in which Bering anomalies lead Barents-Kara

anomalies. The analogous correlations, corresponding to family FM2 , are shown in

panels C and D for the Labrador and Bering Seas and for SLP mode LSLP
1 (the

AO mode). These correlations are very small compared with panels A and B. The

raw data displays very little correlation structure and weak correlations, that are

primarily negative, emerge after conditioning on the AO mode. It should be noted

that the limb of negative correlations, with Bering lagging Labrador, corresponds to

summer sea-ice anomalies in the Bering Sea, which are extremely weak. Therefore,

this limb has questionable significance.

Panels E and F show cross-correlations between the Barents-Kara and Labrador

Seas for the HadISST dataset, conditional on |LSLP
1 | > 1 (corresponds to 35% of

the data). Note that we use a value of 1 rather than 1.5 for the conditional

correlations because of the shortness of the observational time series. Also, the

shortness of the time series implies a higher 95% significance level for correlations.

We plot correlations using the same colorbar as CCSM3 and simply white-out all

correlations which are not significant at the 95% level. The raw data displays some

negative correlation, but a dramatic strengthening is observed when conditioning
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on an active AO mode. The limb of white in panel F, extending from (May, +3) to

(Dec, +9) corresponds to lagged correlations with summer months. At lags beyond

this limb, we observe strong negative correlations. This feature is a reemergence of

anti-correlation between the Barents-Kara and Labrador Seas. The reemergence

structure is less clear for negative lags, where the Labrador leads the Barents-

Kara, however we generally observe anti-correlation between the two seas, which

is significantly stronger than the raw data.

4.7 Conclusions

We have studied Arctic sea-ice reemergence (Blanchard-Wrigglesworth et al.,

2011a) in a comprehensive climate model and observations. This study has doc-

umented the regional and temporal details of sea-ice reemergence and illustrated

two potential reemergence mechanisms, involving SST and SLP persistence, re-

spectively. We have used coupled NLSA (Chapter 2), a nonlinear data analysis

technique for multivariate timeseries, to analyze the co-variability of Arctic SIC,

SST, and SLP. Coupled NLSA was applied to a 900-year equilibrated control in-

tegration of CCSM3, yielding spatiotemporal modes, analogous to EEOFs, and

temporal patterns, analogous to PCs. Modes were also extracted from 34 years

of observational data, using SIC and SST observations from HadISST and SLP

reanalysis from ERA-Interim. In both the model and observations, these NLSA

modes capture three distinct types of temporal behavior: periodic, low-frequency,

and intermittent variability. The low-frequency modes have spatial patterns that

closely resemble the leading EOFs of each variable. In particular, the low-frequency

SLP modes correlate strongly with the well-known Arctic Oscillation (AO, Thomp-
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son and Wallace, 1998) and Arctic Dipole Anomaly (DA, Wu et al., 2006) patterns

of SLP variability. The temporal patterns of the low-frequency SLP modes, ob-

tained here without any preprocessing of the raw data, closely resemble a low-pass

filtered version of the corresponding PCs obtained via EOF analysis.

Performing time-lagged pattern correlations, we have found clear pan-Arctic

sea-ice reemergence signals in the model and observations. The lagged pattern

correlation approach employed in this study reveals a stronger reemergence signal

in observations than previous studies on reemergence (Blanchard-Wrigglesworth

et al., 2011a; Day et al., 2014b). Using coupled NLSA modes, we have found low-

dimensional families that are able to reproduce the reemergence signal of the raw

SIC data. Intriguingly, these families explain a relatively small portion of the raw

SIC variance, yet when removed from the raw data the resulting signal exhibits

significantly weaker reemergence. Moreover, the associated SST and SLP patterns

of these families demonstrate two possible reemergence mechanisms, consistent

with those proposed by Blanchard-Wrigglesworth et al. (2011a) and Deser et al.

(2002). The SST–sea-ice reemergence mechanism, in which spring sea-ice anoma-

lies are imprinted and stored as summer SST anomalies, is clearly active in the

Barents-Kara, Bering, and Labrador Seas. The SLP–sea-ice mechanism, in which

sea-ice anomalies reemerge due to the winter-to-winter persistence of low-pass fil-

tered SLP anomalies (atmospheric regimes), is also observed in these regions, with

the exception of the Bering Sea in the observational record.

A key finding of this study is that these reemergence patterns are part of a

pan-Arctic scale organization involving SLP teleconnection patterns. In particular,

we have found strong phase relationships between sea-ice reemergence events in

geographically distinct regions. Unable to explain this teleconnection in terms
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of purely local SST anomalies, we find clear relationships between regional sea-ice

anomalies and large-scale SLP variability. In CCSM3, an out-of-phase relationship

between the Bering/Labrador and Barents-Kara Seas is found to be consistent with

the phase and amplitude of the DA mode. Similarly, an out-of-phase relationship

between the Bering/Barents-Kara and Labrador Seas is found to be consistent with

the phase and amplitude of the AO mode. In observations, the AO mode is able

to explain the strong out-of-phase anomalies of the Barents-Kara and Labrador

Seas, but cannot explain the weaker anomalies of the Bering Sea. These regional

phase relationships are weakly visible in the raw SIC data, and are significantly

strengthened by conditioning on an appropriate SLP mode (the AO or DA) being

active.

Another key aspect of this study is the regional and temporal characteriza-

tion of sea-ice reemergence. We have identified significant regional differences in

reemergence between the model and observations, particularly in the Labrador Sea

and the North Pacific sector, despite their pan-Arctic agreement. We have also

found that reemergence events and mechanisms have significant temporal variabil-

ity, and that the low-frequency modes of the reemergence families act as effective

predictors of periods of active or quiescent reemergence. A set of reemergence

metrics has been created, by which one can judge the strength and sign of sea-ice

reemergence events, and the associated SST and SLP mechanisms.

In this study, we have demonstrated two plausible mechanisms for sea-ice

reemergence, involving the atmosphere and the ocean, but which mechanism is

most crucial in producing ice reemergence? Is sea-ice reemergence a fully coupled

phenomenon, or does it also occur in more idealized situations? This data analysis

study has identified correlation, but not causation. In Chapter 5, we analyze a
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hierarchy of coupled model experiments to study these questions.
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Chapter 5

Sea-Ice Reemergence in a Model

Hierarchy

5.1 Introduction

The study of Chapter 4 identified an atmospheric role in spring-to-fall reemer-

gence, relating reemerging sea-ice concentration (SIC) patterns to pan-Arctic scale

sea-level pressure (SLP) teleconnection patterns. These patterns closely resemble

the Arctic Dipole Anomaly (DA, Wu et al., 2006) and Arctic Oscillation (AO,

Thompson and Wallace, 1998) patterns of SLP variability. This study also corrob-

orated earlier findings on an SST–SIC spring-to-fall reemergence mechanism, and

suggested a possible SLP–SIC mechanism, in which SIC anomalies reemerge due to

winter-to-winter regime persistence of large-scale atmospheric circulation patterns.

Chapter 4 did not quantify the relative importance and possible inter-dependence

of these two mechanisms. In the present work, we explore a model hierarchy to

gain insight into the relative roles of the ocean and the atmosphere in producing
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sea-ice reemergence. Our main finding is that the SST–SIC mechanism can exist

as a stand-alone process, while the SLP–SIC mechanism cannot. Nevertheless, the

atmosphere is found to a play a crucial role in setting SIC patterns of reemer-

gence, particularly in models that have full coupling between the atmosphere and

the ocean.

Sea-ice reemergence requires two elements: (1) a source of sea-ice variability

to create initial sea-ice anomalies and (2) a source of memory, which allows these

anomalies to reemerge at some time in the future. Reemergence has been studied in

observations and comprehensive climate models, both of which involve full-physics

and fully-coupled ocean, atmosphere, and sea-ice components. In this study, we

analyze a hierarchy of models using the Community Climate System Model version

4 (CCSM4; Gent et al., 2011), designed to probe different aspects of oceanic and

atmospheric variability and memory. Summarized in Figure 5.1, these models

consist of a fully-coupled control run, a slab ocean model (SOM) which has reduced

oceanic memory, and two coordinated ocean-ice reference experiments (COREs)

which have active sea-ice–ocean components forced by a specified atmosphere and

lack ocean-to-atmosphere coupling. Using this model hierarchy, we perform a

cross-model comparison with particular focus on: (1) the pan-Arctic, regional,

and temporal aspects of sea-ice reemergence; (2) the relationship between sea-ice

reemergence and SLP teleconnections; and (3) the representation of SST–SIC and

SLP–SIC reemergence mechanisms.
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5.2 Model hierarchy and methods

5.2.1 CCSM4 model hierarchy

We examine a hierarchy of global climate model (GCM) experiments from

CCSM4, summarized in Figure 5.1. The fully-coupled CCSM4 successfully sim-

ulates many aspects of Arctic climate, including the SIT distribution and SIC

field (Jahn et al., 2012). CCSM4 has known Arctic SLP biases, particularly

a Beaufort high which is too weak and an SLP field that is generally biased

low relative to reanalysis data (de Boer et al., 2012). The CCSM4 control run

(b40.1850.track1.1deg.006) is 1300 years long, is forced with 1850 greenhouse gas

levels, and has a grid of 1◦ nominal resolution for the ocean, sea-ice, and atmo-

sphere components.

The SOM is the “CCSM4-NEWSOM”, as described in Bitz et al. (2012). The

SOM has full atmosphere and sea-ice components, a mixed-layer ocean, and is

forced with 1850 greenhouse gas levels. The mixed-layer depth, computed from

an ocean general circulation model (OGCM) control run, is spatially-varying but

fixed in time. The SOM also includes a “Q-flux” term, which accounts for changes

to mixed-layer heat content due to ocean heat transport convergence. The Q-flux

term, computed offline using the OGCM control run, is spatially-varying and has

a seasonal cycle. The SOM run is 60 years long and shares the same grid as the

control run.

Note that in the SOM run SST was not explicitly stored as an output variable.

We use the “surface temperature” variable stored in the atmospheric model output,

which is equal to SST for fully ocean-covered gridpoints. For gridpoints that are

fully covered by sea ice (we define this as SIC > 70%), we set SST equal to -
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Figure 5.1: Schematic of the different CCSM4 runs analyzed in this study. Arrows
indicate coupling between different components of the atmosphere–ocean–sea-ice
system.

1.8C, the freezing point of saltwater at a salinity of 35 parts per thousand. SST

at gridpoints with partial ice coverage was obtained by performing a bilinear (2-

D) interpolation between the ice-covered and ocean-covered gridpoints. We also

produced data using a newer version of the CCSM4 SOM with an updated code

base. With this dataset, we reached the same qualitative conclusions, but observed

some differences in the spatial patterns of the leading modes of variability. In

particular, the leading SIC and SST modes have a stronger signal in the Sea of

Okhotsk. Correspondingly, the high pressure center in Figure 5.4, ahead, is shifted

further West over the Bering Sea, which is consistent with the modified SIC field.

In this study, we present the data from the “CCSM4-NEWSOM”, as it provides

better contact with the earlier literature of Bitz et al. (2012).
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The CORE runs have identical ice-ocean components to the control run, and are

forced using the atmospheric data product developed in Large and Yeager (2004)

and subsequently updated in Large and Yeager (2009). We analyze CCSM4 ice-

ocean runs that are forced with phase I (CORE-I; Griffies et al., 2009) and phase

II (CORE-II; Danabasoglu et al., 2014) of the CORE forcing. The 950-yr CORE-I

run is forced by normal year forcing (NYF) version 2 (Large and Yeager, 2009),

which is a repeated climatological mean annual cycle of atmospheric state variables

and fluxes. The CORE-II run is forced by interannnually varying forcing (IAF)

version 2 (Large and Yeager, 2009), which is an estimate of the atmospheric state

over the 60 year period from 1948–2007. This run is 300-yrs long, consisting of

five repetitions of the 60-yr CORE-II forcing cycle. We analyze the last 60-yrs

of this run to minimize issues related to spin up. Figure 2 of Danabasoglu et al.

(2014) shows that by the fifth forcing cycle, the CCSM4 CORE-II experiment has

equilibrated. Both CORE-I and CORE-II atmospheric fields are defined on a T62

grid (1.875◦ resolution). In order to focus on internal variability, we detrend the

CORE-II data by subtracting the monthly linear trend from each month.

We also compare CCSM4 results to 35-years of SIC satellite observations from

the Met Office Hadley Center Sea Ice and Sea Surface Temperature (HadISST;

Rayner et al., 2003) dataset. As with the CORE-II run, we detrend the HadISST

data by subtracting monthly linear trends. All data is monthly averaged and

the seasonal cycle is not removed. Retaining the seasonal cycle is crucial for our

analysis of reemergence using nonlinear Laplacian spectral analysis (NLSA) modes,

ahead.
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5.2.2 Data analysis methods

In this work we utilize coupled NLSA, a unit-independent data analysis algo-

rithm that extracts spatiotemporal modes of variability in multivariate datasets

(Chapter 2). Coupled NLSA is a multivariate extension of the original NLSA

algorithm, which is a nonlinear data analysis technique designed to identify in-

trinsic timescales and spatiotemporal patterns in dynamical systems (Giannakis

and Majda, 2012c,a, 2013). Here, we follow the approach of Chapter 4 and study

the co-variability of SIC, SST, and SLP in the CCSM4 model hierarchy. For

each model, we recover sets of temporal and spatiotemporal modes, and use these

modes to investigate the representation of sea-ice reemergence. We refer the reader

to Chapters 2 and 4 for more details on the coupled NLSA methodology and im-

plementation.

Coupled NLSA captures periodic modes, which represent the seasonal cycle,

low-frequency modes, which capture interannual-to-decadal variability, and inter-

mittent modes, which reflect the interaction of this periodic and low-frequency

variability, in both space and time. Following Chapter 4, reemergence mode fami-

lies are constructed as the minimal set of modes able to qualitatively reproduce the

reemergence signal of the raw SIC data. For each model, we identify a five-mode

reemergence family, consisting of a low-frequency mode, and degenerate pairs of

annual and semiannual intermittent modes. The modes were computed truncation

levels of l = 21, 24, and 23 eigenfunctions and Gaussian locality parameters of ε =

0.8, 1.0 and 1.0 for the control, CORE-II, and SOM runs, respectively.
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5.3 Results

5.3.1 Sea-ice reemergence in CCSM4

We begin with a comparison of the regional sea-ice reemergence characteristics

in the CCSM4 model runs and HadISST observations, shown in Figure 5.2. We

assess sea-ice reemergence by computing time-lagged pattern correlations of the

raw SIC anomaly field via the methodology of Chapter 3 and Chapter 4. For each

initial month (from Jan–Dec) and lag (from 0–23 months), we report the time-

mean pattern correlation, taken over all (month, month+lag) pairs in the SIC

time series.

Over a pan-Arctic domain (0◦–360◦ and 45◦N–90◦N), we find that the control

and CORE-II experiments closely match the HadISST reemergence signal. Each

of these displays a clear spring-to-fall reemergence, with spring SIC anomalies

positively correlated with fall anomalies, despite a loss of correlation over the

intervening summer months. The fall-to-spring reemergence is quite weak in each

of these experiments. Note that if one performs time-lagged total area correlations

via the methodology of Blanchard-Wrigglesworth et al. (2011a), the fall-to-spring

reemergence is more prominent, yet still significantly weaker than the spring-to-fall

reemergence.

Consistent with earlier CCSM3 findings (Blanchard-Wrigglesworth et al., 2011a),

the SOM spring-to-fall reemergence signal is significantly weaker than the control

run. This suggests the crucial importance of a full-depth ocean in obtaining a

realistic representation of spring-to-fall reemergence. Ahead, we will argue that

the fall-to-spring reemergence is not as severely affected in the SOM.

The CORE-I run exhibits substantial sea-ice persistence and an unrealistically
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Figure 5.2: Time-lagged pattern correlations of SIC anomalies, computed for
HadISST observations and various CCSM4 model runs, over different regions of
the Arctic.

strong reemergence signal, likely due to the absence of atmospheric variability

in this model. This suggests that internal ocean variability alone is insufficient

to produce a realistic reemergence signal. Also, the SIC variability of CORE-

I dramatically underestimates that of observations. The ratio of area-integrated

variance in CORE-I vs HadISST is 0.01. As a comparison, the ratios are 0.72, 0.53,

and 0.56 for the control, CORE-II, and SOM runs, respectively. This indicates that

a reasonable representation of atmospheric variability is essential to producing

reasonable sea-ice variability and reemergence.

Next, we examine the regional reemergence signals in the Bering (165◦E–
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160◦W and 55◦N–65◦N), Barents-Kara (30◦E–90◦E and 65◦N–80◦N), and Labrador

(70◦W–40◦W and 45◦N–80◦N) seas. The CORE-I reemergence signal is too strong

in all regions, relative to observations. The SOM reemergence signals are consis-

tently weaker than the control run, and are slightly enhanced in the Bering Sea.

We find that the CORE-II run is a better match with observations than the

control. Specifically, matching observations, CORE-II has a weak reemergence sig-

nal in the Bering Sea and Sea of Okhotsk (not shown), whereas the control has

strong reemergence signals in these regions. CORE-II qualitatively agrees with ob-

servations in all regions, except the Labrador Sea/Baffin Bay region, where it has a

weak reemergence signal. This weak reemergence signal in the Labrador Sea/Baffin

Bay is a robust feature across all CCSM3 and CCSM4 runs that we have analyzed,

likely related to the challenges of accurately modeling deep ocean convection in the

Labrador sea (Danabasoglu et al., 2012). Interestingly, Blanchard-Wrigglesworth

and Bitz (2014) note strong SIT biases in the CORE-II run. Despite these biases

in SIT, the CORE-II SIC reemergence signal is very realistic.

Next, informed by the NLSA reemergence families, we investigate the tem-

poral variability of sea-ice reemergence across these CCSM4 models. We com-

pute time-lagged pattern correlations of the raw SIC data, both for the full time-

series, and conditional on times in which the low-frequency SIC mode (LSIC
1 ) of

each reemergence family is active. In all three models, we find that the condi-

tional correlations display enhanced spring-to-fall and fall-to-spring reemergence

(see Figure 5.3). This indicates substantial temporal variability in the strength

of reemergence events across all three models. This also demonstrates that the

low-frequency NLSA modes are effective predictors of these periods of enhanced

reemergence.
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Figure 5.3: Time-lagged pattern correlations for different CCSM4 model runs,
computed for the raw SIC anomaly data (left column) and conditional on the LSIC

1

mode of each reemergence family being active (right column). We condition on∣∣LSIC
1

∣∣ > 2 for the control run and
∣∣LSIC

1

∣∣ > 1.5 for the CORE-II and SOM runs.
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In the SOM, the conditional correlations show a fall-to-spring reemergence of

similar strength to the control and CORE-II models, but a significantly weaker

spring-to-fall reemergence. The fall-to-spring reemergence occurs in regions of the

central Arctic that are fully ice-covered during winter, where SSTs are unable to

retain the memory of earlier SIC anomalies. Since the ocean does not participate

in the fall-to-spring reemergence mechanism involving persistence of SIT anoma-

lies, one would expect that the simplified ocean of the SOM would not impact

the representation of this mechanism. Conversely, the spring-to-fall reemergence

mechanism depends crucially on ocean heat storage below the mixed layer (Hol-

land et al., 2013). Therefore one would expect decreased fidelity of this mechanism

in the SOM. The conditional lagged correlations of Figure 5.3 are consistent with

both of these expectations.

5.3.2 Reemergence mechanisms and SLP–SIC teleconnec-

tions

We now examine the spatiotemporal evolution of the NLSA reemergence fami-

lies, with a particular focus on winter SIC–SLP teleconnections. Figure 5.4 shows

winter means (January–March) of the reconstructed SIC, SST, and SLP fields of

each reemergence family. These patterns are composites, computed over all times

in which LSIC
1 of each family is active, in positive phase. The negative phase

composites are similar, with opposite sign. Movie 15 of the online supplementary

material shows the monthly evolution of these fields.

The winter SIC patterns are quite similar between the control and SOM runs,

with an SIC dipole pattern between the Bering and Barents-Greenland-Iceland-

Norwegian (Barents-GIN) Seas. The SIC pattern of CORE-II is dominated by
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Figure 5.4: Winter mean (Jan–Mar) composites of SIC, SST, and SLP shown
for reemergence families of the control, CORE-II, and SOM. The composites are
computed over all times in which LSIC

1 of each family is active, in positive phase.
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anomalies in the Barents-GIN Seas, and lacks the North Atlantic–North Pacific

dipole that characterizes the control and SOM. It should also be noted that despite

being forced by a realistic atmosphere, the CORE-II SIC pattern differs substan-

tially from the leading observational SIC mode, whether this mode is derived via

EOF analysis (Deser et al., 2000) or via NLSA (Chapter 4). The SST patterns

of each family have opposite sign to the local SIC anomalies, and generally reflect

the spring-to-fall SST–SIC reemergence mechanism (see Movie 15). One excep-

tion to this is the Barents region of the SOM, which does not display the summer

imprinting of SST anomalies seen in the Bering Sea of the SOM and in the other

models. A possible reason for this is the shallow depth of the Bering Sea, meaning

the mixed layer ocean is a reasonable approximation to the true ocean dynamics

of this region, and therefore provides a reasonable representation of the SST–SIC

mechanism. Conversely, the Barents-GIN seas are deeper, and are likely poorly

represented by the SOM.

The SLP patterns of each reemergence family provide a physical explanation

for the inter-model differences in winter SIC. The SOM and control run have

somewhat different SLP patterns, but share a key common feature: a transpolar

advective pathway defined via geostrophic winds. This pathway creates commu-

nication between the North Atlantic and North Pacific basins, providing an SLP–

SIC teleconnection between these disconnected regions. The geostrophic winds of

these SLP patterns, and their associated surface air temperature advection, tend

to create SIC anomalies of opposite sign in the Bering and Barents-GIN Seas. In

contrast, the CORE-II run does not exhibit this transpolar advective pathway, and,

correspondingly, does not display a North Atlantic–North Pacific teleconnection.

To examine this winter SLP–SIC interaction more precisely, we next consider
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the relationship between meridional wind and SIC in the Bering, GIN, and Barents-

Kara Seas (see Figure 5.5). Using the reemergence families, we create indices

for these regions based on spatial-mean meridional winds and spatial-mean SIC

anomalies, and normalize these indices by the maximum standard deviation over

the three regions. In regions where there is strong SLP–SIC co-variability, we ex-

pect a negative correlation between these indices, since positive meridional winds

create negative SIC anomalies, and vice versa. The control run shows this nega-

tive correlation clearly in the Bering, GIN, and Barents-Kara Seas, all regions of

significant SIC variability in this model. Similarly, the SOM shows negative corre-

lations in the Bering and GIN seas, which dominate the winter SIC variability of

this model, and no relationship in the Barents-Kara Seas, which have little winter

SIC variability. CORE-II shows a clear negative relationship in the Barents-Kara

Seas, a weak positive relationship in the GIN Seas, and a low-variance SIC signal

in the Bering Sea. The SLP–SIC relationships in CORE-II are weaker than the

other models, as they can explain the Barents-Kara anomalies, but not the GIN

anomalies.

A necessary condition for an SIC–SLP teleconnection is a clear negative corre-

lation between mean meridional wind and mean SIC in at least one region of both

the North Atlantic and North Pacific. The control and the SOM clearly satisfy

this necessary condition, but CORE-II does not. Why is this the case? A key dif-

ference between these three models is the lack of ocean-to-atmosphere coupling in

CORE-II (see Figure 5.1). In particular, CORE-II ocean heat anomalies are unable

to feedback on the atmosphere and modify the atmospheric state. These results

suggest that this ocean-to-atmosphere coupling is essential in creating coherent

pan-Arctic-scale co-variability of SIC and SLP.
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Figure 5.5: Scatterplots of standardized mean SIC vs mean meridional wind for
the control, CORE-II, and SOM. These values are computed over winter months
(Jan–March) in the Bering, GIN, and Barents-Kara Seas.
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Movie 15 shows that the reemergence families of the control and SOM display

the previously mentioned SLP–SIC reemergence mechanism, due to their winter-to-

winter SLP regime persistence. This SLP–SIC mechanism is not well represented in

the CORE-II run, as the SLP patterns are quite transient in space (Movie 15) and

do not correlate as clearly with SIC anomalies (Figure 5.5). Conversely, the CORE-

II and control runs display the SST–SIC reemergence mechanism, whereas this

mechanism is not as robustly represented in the SOM. Given CORE-II’s stronger

and more realistic reemergence signal compared with the SOM, this suggests that

the SST–SIC mechanism can operate as a stand-alone reemergence mechanism.

In contrast, the SLP–SIC mechanism cannot operate as a stand-alone process, in

the sense that it crucially depends on the full-depth dynamics and persistence of

the ocean. This suggests that oceanic persistence is the key source of memory

for sea-ice reemergence. However, this does not preclude an atmospheric role in

reemergence. Given the observed pan-Arctic scale organization of SIC anomalies

in the control and SOM, the atmosphere is the most likely driver of this variability,

as oceanic variability does not provide a direct method of communication between

different ocean basins. In the runs with ocean-to-atmosphere coupling, the atmo-

sphere provides an important dynamical linkage, setting the spatial patterns of

SIC reemergence.

5.4 Conclusions

We have assessed the representation of sea-ice reemergence and associated SST

and SLP-based mechanisms in a hierarchy of CCSM4 models. The primary con-

clusions of this study are:
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1. There is good quantitative agreement of pan-Arctic reemergence between ob-

servations, the control, and CORE-II. On regional scales, CORE-II matches

the reemergence signal of observations better than the control.

2. Relative to observations, the reemergence signals of the SOM and CORE-

I are too weak and too strong, respectively. The weak SOM reemergence

signal indicates the crucial role of ocean heat anomalies stored below the

mixed layer in providing memory for reemergence. The unrealistically strong

reemergence in CORE-I indicates the necessity of atmospheric variability in

providing a realistic representation of reemergence.

3. The control, CORE-II and SOM all exhibit substantial temporal variability

in the strength of reemergence events. The low-frequency SIC modes of the

NLSA reemergence families are effective predictors of periods of enhanced

reemergence activity.

4. The SIC patterns of the reemergence families of the control and SOM runs

exhibit a winter sea-ice teleconnection between the Bering and Barents-GIN

Seas. The SLP patterns of the families are physically consistent with the

SIC patterns, and allow communication between the North Pacific and North

Atlantic sectors via a transpolar advective pathway. The CORE-II winter

SIC pattern is dominated by anomalies in the Barents-GIN Seas, and does

not exhibit this teleconnection. This suggests that dynamical feedback from

the ocean to the atmosphere is essential in creating large-scale organized

patterns of SIC–SLP co-variability.

5. The control run exhibits both the SST–SIC and the SLP–SIC reemergence

mechanisms. The representation of the SST–SIC and SLP–SIC mechanism
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is degraded in the SOM and CORE-II runs, respectively. CORE-II has a

more realistic reemergence signal than the SOM, suggesting that the SST–

SIC mechanism is able to operate as a stand-alone mechanism. In models

with ocean-to-atmosphere coupling, atmospheric variability plays a key role

in reemergence, setting the spatial patterns of SIC reemergence.

In this chapter, we have attempted to gain insight into the coupled nature

of sea-ice reemergence, by exploring models with active sea-ice components, but

different physics and coupling of the atmosphere and the ocean. Because of the

nonlinear, coupled dynamics of the atmosphere-ocean-ice system it is challenging to

properly address notions of causality in this framework. Additional work, involving

idealized model experiments and analysis of other GCMs is required to further test

the conclusions presented in this chapter.
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Chapter 6

Fall-to-Spring Sea-Ice

Reemergence Mechanisms

6.1 Introduction

In addition to the well-known decline of Arctic sea-ice extent over the satellite

era, submarine and satellite measurements indicate that Arctic sea ice has also

thinned over this time period (Rothrock et al., 1999; Kwok and Rothrock, 2009).

This reduction in sea-ice thickness (SIT) has important implications for Arctic

climate, as it modifies heat and momentum fluxes between the atmosphere and

the ocean, which, in turn, affects the large-scale mean state and variability of the

atmosphere-ice-ocean system (Holland et al., 2006a). SIT also plays an important

role in Arctic feedback mechanisms such as the negative ice thickness–ice growth

rate feedback (Bitz and Roe, 2004), the positive sea-ice albedo feedback (Budyko,

1969; Curry et al., 1995), and the negative ice thickness–ice strength feedback

(Owens and Lemke, 1990).
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Owing to its persistence, SIT provides a potential source of predictability for

the Arctic climate system (Chevallier and Salas-Mélia, 2012; Guemas et al., 2014).

This is a property that could be exploited by operational sea-ice prediction sys-

tems. Indeed, recent studies have shown improved predictions in model experi-

ments that assimilate SIT data (Yang et al., 2014) and in experiments that are

initialized using knowledge of the SIT state (Day et al., 2014a). Perfect model

predictability studies have shown that sea-ice volume has potential predictabil-

ity at lead times up to roughly 36 months, which is significantly longer than the

analogous estimates for sea-ice extent (Tietsche et al., 2014). The SIT state also

has important implications for sea-ice predictability, as GCM studies show that

thin sea-ice states are inherently less predictable than thick states (Holland et al.,

2011; Germe et al., 2014). A related challenge for GCM-based predictability stud-

ies is that the mean state and variability of SIT varies substantially across models

(Blanchard-Wrigglesworth and Bitz, 2014).

Chapters 3–5 of this thesis have focused on the spring-to-fall variety of sea-ice

reemergence and associated reemergence mechanisms involving SST and SLP. In

this chapter, we examine the fall-to-spring variety of reemergence, focusing on a

mechanism proposed by Blanchard-Wrigglesworth et al. (2011a) in which growth

season (fall) SIC anomalies reemerge the following melt season (spring) due to

persistent SIT anomalies in the central Arctic. This fall-to-spring reemergence is an

example of a process in which SIT acts as a crucial source of predictability for SIC

anomalies. In this chapter, we study the co-variability of Arctic SIC, sea-surface

temperature (SST), sea-level pressure (SLP), and SIT using coupled nonlinear

Laplacian spectral analysis (NLSA). We specifically focus on (1) the representation

of fall-to-spring reemergence by coupled NLSA modes; (2) the ability of these
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modes to capture an SIT-based reemergence mechanism; and (3) the relation of

this SIT mechanism to other reemergence mechanisms.

6.2 Datasets and methods

6.2.1 Datasets

This study is based on analysis of a 1300-year control run (b40.1850.track1.1deg.006)

of the Community Climate System Model version 4 (CCSM4; Gent et al., 2011).

This run is forced with 1850 greenhouse gas levels and has 1◦ nominal resolution

for the ocean, sea ice, and atmosphere components. CCSM4 successfully simulates

many aspects of Arctic climate and has a number of improvements compared to

CCSM3 (Jahn et al., 2012). Of particular note for the present study is the sig-

nificantly improved SIT representation in CCSM4, which motivates its use in our

examination of the role of SIT in fall-to-spring sea-ice reemergence. All data is

monthly averaged and the seasonal cycle has not been removed.

6.2.2 Data analysis methods

In this study, we utilize the coupled NLSA algorithm, as developed in Chapter

2, to investigate the co-variability of SIC, SST, SLP, and SIT in the Arctic sector.

We use coupled NLSA to extract modes of co-variability for these datasets, and uti-

lize these modes to study low-dimensional representations of sea-ice reemergence.

We employ the methodology of Chapter 4 to construct “reemergence families” of

NLSA modes: small mode subsets that are able to reproduce the lagged correlation

structure of the raw SIC data.
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We compute the coupled NLSA kernel using SIC, SST, and SLP as input vari-

ables and a Gaussian locality parameter of ε = 0.8. NLSA modes are computed

using a truncation level of l = 21 eigenfunctions. Note that the SIT modes are

obtained by projecting the SIT data onto these eigenfunctions, and performing a

singular value decomposition of the projected SIT data. This is analogous to our

method for finding modes for the other variables. As in earlier chapters, coupled

NLSA produces periodic, low-frequency, and intermittent modes of variability. We

identify a reemergence family consisting of a low-frequency mode and pairs of an-

nual and semiannual intermittent modes. Lagged correlations computed using this

family display both a spring-to-fall and a fall-to-spring reemergence of correlation.

Note that the SIC, SST, and SLP modes of this reemergence family are the same

as those discussed for the CCSM4 control run in Chapter 5.

We also performed computations using SIC, SST, SLP, and SIT as input vari-

ables to the coupled NLSA kernel. We find that the inclusion of SIT significantly

modifies the kernel values, as the term corresponding to SIT tends to dominate

over the other variables. This is likely the result of the relatively weak seasonal

cycle of SIT compared to the other fields. This weak seasonal cycle implies that the

ratio of the phase velocity to the variance is generally lower for SIT than for other

variables, meaning that the SIT term makes a more substantial contribution to the

coupled NLSA kernel. For example, the ratio of non-periodic variance to periodic

variance is 0.36 for SIC, 0.08 for SST, 1.63 for SLP, and 2.31 for SIT. SIT has

the largest ratio, indicating its dominant influence on the kernel values. SLP also

has a high ratio; however, the SLP field typically decorrelates over a 1–2 month

timescale (see Chapter 4, Figure 11). This rapid decorrelation implies that the

SLP field takes on many different states within a given 24-month embedding win-
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dow, generally reducing the covariability between different 24-month lag-embedded

samples. SIT, conversely, decorrelates over a 3–4 year timescale, meaning that each

lag-embedded SIT vector represents a single coherent SIT state. This combination

of a high non-periodic to periodic variance ratio and substantial autocorrelation

over the embedding window gives SIT a dominant influence in the coupled NLSA

kernel.

We find that the non-periodic NLSA modes from the four-variable kernel have

spatial patterns that are dominated by SIT variability. Moreover, the intermittent–

low-frequency envelope relationships that were used extensively in earlier chapters

are substantially degraded when using the four-variable kernel. This makes it

significantly more difficult, and in some cases impossible, to find low-dimensional

mode families that capture sea-ice reemergence. For these reasons, we choose to

use the three-variable coupled NLSA kernel for this study. Future work is needed

to allow for inclusion of SIT in the coupled kernel, without dominating the other

variables of interest.

6.3 Results

6.3.1 Fall-to-spring sea-ice reemergence

In this study, we focus on the fall-to-spring (growth season to melt season)

reemergence of Arctic SIC anomalies. We characterize reemergence via the time-

lagged pattern correlation methodology of Chapters 3–5. We compute time-mean

pattern correlations for all initial months (Jan–Dec) and for all lags from 0–23

months. These time-lagged pattern correlations are reported in Figure 6.1. The

left column shows correlations computed using the raw SIC data and the right
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Figure 6.1: Time-lagged pattern correlations of SIC anomalies for the CCSM4
control run, computed over a pan-Arctic domain, the Chukchi, East Siberian and
Laptev (CEL) Seas and the northern Barents-Kara (BK) Seas. (A), (C), and (E)
show correlations computed using the raw SIC data. (B), (D), and (F) show con-
ditional correlations computed over all times in which

∣∣LSIC
1

∣∣ > 2. All correlations
are significant at the 95% level, based on a t-test.

column shows conditional correlations computed during times in which the low-

frequency SIC mode of the reemergence family is active (
∣∣LSIC

1

∣∣ > 2).

Time-lagged pattern correlations computed over a pan-Arctic domain (0◦–360◦

and 45◦N–90◦N), show a clear spring-to-fall reemergence and a relatively weak
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fall-to-spring reemergence (Figure 6.1a). Both types of reemergence are substan-

tially enhanced when conditioning on the low-frequency SIC mode being active

(Figure 6.1b). Of particular interest in this study is the clear fall-to-spring reemer-

gence displayed during times in which the reemergence mode family is active.

Correlations were also computed using the time-lagged total area methodology of

Blanchard-Wrigglesworth et al. (2011a). The fall-to-spring reemergence is more

prominent in the total-area lagged correlations, yet remains substantially weaker

than the spring-to-fall reemergence.

The fall-to-spring reemergence occurs in regions of the central Arctic that are

fully sea-ice covered, and hence sea-ice anomaly free, during the winter months.

We compute time-lagged pattern correlations for two regions of the central Arctic:

the Chukchi, East Siberian and Laptev (CEL) Seas and the northern Barents-Kara

(BK) Seas. These regions will be focussed on throughout this study. We define the

CEL domain as 105◦E–160◦W and 65◦N–80◦N and define the northern BK domain

as 10◦E–90◦E and 78◦N–85◦N. In both of these regions, we observe a weakened

spring-to-fall reemergence in both the raw data and in the conditional correlations.

The fall-to-spring reemergence, however, appears clearly in the conditional lagged

correlations in both the CEL and the northern BK domains. The northern BK

domain shows a particularly enhanced fall-to-spring reemergence signal compared

with the Arctic conditional lagged correlations. The emphasized fall-to-spring

reemergence in these regions motivates us to focus on them in this study.

6.3.2 SIT–SIC reemergence mechanism

We next examine the spatiotemporal evolution of the NLSA reemergence family,

with particular focus on the role of SIT in fall-to-spring (growth season to melt
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season) reemergence. Figure 6.2 shows reconstructed SIC and SIT fields from the

reemergence family for different months of the year. These are composite patterns,

obtained by averaging over all times in which the low-frequency SIC mode of the

reemergence family is active, in positive phase. The yearly evolution and interplay

of these fields reveals an SIT–SIC fall-to-spring reemergence mechanism, in which

the memory of growth season (fall) SIC anomalies is retained by SIT anomalies in

the central Arctic.

In September, we observe negative SIC anomalies in the CEL Seas and pos-

itive SIC anomalies in the northern BK and Greenland Seas. Roughly spatially

coincident with these anomalies are like-signed SIT anomalies. After reaching its

minimum extent in September, the sea-ice cover enters the growth season, char-

acterized by southward migration of the sea-ice edge. The SIC anomalies tend to

move with the sea-ice edge, eventually vacating the CEL and northern BK do-

mains, whereas the SIT anomalies are spatially-persistent and insensitive to the

sea-ice edge position. By March, the growth season (fall) SIC anomalies of the CEL

and northern BK seas have been lost, as these seas are fully ice covered, and hence

SIC anomaly free, during winter. Conversely, the SIT anomalies have persisted,

retaining anomalies that are spatially coincident with the September anomalies.

The melt season begins in April, and during this season the SIC anomalies begin to

retreat northward, vacating the Bering Sea and the southern portion of the Barents

Sea. Eventually, the SIC anomalies move far enough northward that they begin

to interact with the SIT anomalies. In the CEL domain, the ice is anomalously

thin, and melts out faster than normal, creating a negative SIC anomaly in this

region. Conversely, the northern BK Seas have anomalously thick ice, meaning

that the ice melts out more slowly than normal, creating a positive SIC anomaly.
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Figure 6.2: Spatial pattern composites of SIC and SIT, computed using the NLSA
reemergence family. Movie 16 of the supplementary material shows the spatiotem-
poral evolution of these fields.
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Figure 6.3: SIC and SIT reemergence metrics computed using the NLSA reemer-
gence family. (A) and (B) show a 100-year portion of the time series; (C) and (D)
show a four-year portion.

By this mechanism, growth season (fall) SIC anomalies tend to reemerge the fol-

lowing melt season (spring). After reemerging, the anomalies are maintained up

to the September sea-ice minimum. This cycle roughly repeats again the following

year, and these “reemergence events” tend to recur over 3–10 year time periods.

Next, we introduce a set of reemergence metrics, by which one can judge the
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amplitude and phase of reemergence events, and assess the activity of the SIT–

SIC reemergence mechanism. We define SIC and SIT metrics as the integrated SIC

and SIT anomalies, respectively, over a region of interest. These metrics, computed

using the NLSA reemergence family over the CEL and northern BK domains, are

shown in Figure 6.3. Note that the metrics have been normalized by their standard

deviation.

Fall-to-spring reemergence events can be identified as periods of time during

which the SIC reemergence metrics (Figure 6.3a) have large amplitude and con-

sistent sign over a number of consecutive years. The SIC metrics pulse with an

annual cycle, with large amplitude in summer months and small amplitude in win-

ter months. These metrics also display a clear anti-phase relationship between SIC

anomalies in the CEL and northern BK domains. The SIT reemergence metrics

(Figure 6.3b) have the same sign as the SIC metrics, but do not display an annual

pulsing. Rather, the SIT metrics persist with the same sign for a number of years

and closely resemble modulating envelopes for the SIC metrics. This relationship

reflects the SIT–SIC reemergence mechanism described above, with SIT retaining

memory that allows for SIC anomalies to reemerge in successive summers. Fig-

ures 6.3c and 6.3d display a zoom-in of these metric values for a four-year period

of active reemergence. We observe that the SIC metric is small over the winter

months and large over summer months. The SIT metric maintains a persistent

sign over this four-year time period, matching the sign of the SIC anomalies.

6.3.3 Relation to other reemergence mechanisms

The identified reemergence family captures both fall-to-spring as well as spring-

to-fall reemergence of SIC anomalies. In the previous section, we have demon-
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B: SST-SIC Mechanism
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Figure 6.4: Time series and phase evolution of reemergence metrics for SIC, SST,
SLP, and SIT. These metrics are computed using the NLSA reemergence family.

strated that the family describes an SIT–SIC mechanism for fall-to-spring reemer-

gence. Additionally, the SST and SLP patterns of this family reflect the SST–SIC

and SLP–SIC mechanisms for spring-to-fall reemergence discussed earlier in Chap-

ters 3-5. This motivates a simultaneous comparison of all four fields of the reemer-

gence family. In Figure 6.4, we investigate the seasonality and phase relationships

of these three reemergence mechanisms. We find that each reemergence mecha-

nism displays a clear relation to the seasonal cycle, involving interaction between

SIC anomalies and a second physical variable of the ice-ocean-atmosphere system.

The left column of Figure 6.4 shows reemergence metrics plotted for a four-year
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time period of active reemergence (the same four-year period as used in Figure 6.3).

In all panels, SIC metrics are plotted as solid lines, and the metrics for the field

that provides the reemergence mechanism are plotted as dashed lines. The two

right columns show the phase evolution of these metrics with respect to the sea-

sonal cycle. Specifically, for each metric M(t), the phase evolution is given by

(x(t), y(t)) = (|M(t)| cos(2πt/12), |M(t)| sin(2πt/12)), where t is the time mea-

sured in months. We plot these values for an 80-year portion of the timeseries.

The phase plots are qualitatively similar for other 80-year portions of the 1300-

year timeseries. The SIC and SIT metrics are defined as in section 3.2 of this

chapter. The SST metric, as defined in Chapter 4, is the integrated SST anomaly

computed over the region that experiences summer imprinting of SST anomalies.

The SLP metric, as defined in Chapter 4, is the maximum value of the meridional

geostrophic wind computed over a region of interest.

Figure 6.4a shows the SIT and SIC metrics computed for the CEL and northern

BK domains. The four-year snapshot is that of Figure 6.3c and 6.3d, illustrating

the SIT–SIC reemergence mechanism with persistent SIT anomalies providing the

memory for fall SIC anomalies to reemerge the following spring. The phase evo-

lution of these metrics clearly illustrates the persistence of the SIT anomalies and

the seasonality of the SIC anomalies. The SIT metric tends to be active during

all months of the year, with relatively circular trajectories in phase space, whereas

the SIC metric tends to be strongly active in summer, peaking in September, and

weakly active during the winter months.

In Figure 6.4b, we plot SST and SIC metric values for the Bering Sea. As in

Chapter 4, the Bering SIC metrics are computed over 165◦E – 160◦W and 55◦N –

65◦N and the Bering SST metrics are computed over 165◦E – 160◦W and 60◦N –
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65◦N. For visual clarity we do not plot metrics from the Barents-Kara Seas. The

Barents-Kara metrics display similar qualitative behavior and are out of phase

with the Bering Sea metrics. The four-year snapshot shows that the SIC metric

is large in winter and small in summer. The SST metric has opposite sign to the

SIC metric, and is large in summer and small in winter. These metrics illustrate

the trade-off between SST and SIC, in which summer SST anomalies store the

memory of spring SIC anomalies. This SST memory allows for SIC anomalies

to reemerge the following fall, as illustrated by the metrics. The phase evolution

also demonstrates this SST–SIC trade-off, as the SIC metric is strongly active in

winter months and the SST metric is strongly active in summer months. Indeed,

the sum of these two phase portraits would yield a result with relatively circular

trajectories in phase space.

Finally, in Figure 6.4c we plot SLP and SIC metrics for the Bering Sea. Again,

the Barents-Kara metrics display similar behavior, which we choose not to plot for

visual clarity. The meridional winds have opposite sign to the SIC anomalies, and

have largest amplitude during the winter months. This anti-correlation suggests

a physical SLP–SIC interaction, as positive meridional winds correspond to nega-

tive SIC anomalies, and vice versa. The physical consistency of the SIC and SLP

fields, along with the winter-to-winter persistence of the SLP patterns provides an

SLP–SIC mechanism for reemergence. The phase diagrams illustrate that the wind

anomalies generally lead the SIC anomalies, as the winds are maximal in January

and February, whereas the SIC anomalies peak in March. This relationship, with

wind anomalies leading and SIC anomalies lagging, is consistent with the phys-

ical expectation that these SIC anomalies are forced by atmospheric circulation

anomalies. Additional work, investigating the causality of this SLP–SIC lead-lag
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relationship, is required.

6.4 Conclusions

In this work, we have examined the fall-to-spring (growth season to melt sea-

son) reemergence of Arctic SIC anomalies in a CCSM4 control integration. Using

modes of variability obtained via coupled NLSA, we have constructed a reemer-

gence family of NLSA modes that captures both the fall-to-spring and spring-to-fall

reemergence of Arctic SIC anomalies. This reemergence family captures the spa-

tiotemporal evolution of SIC, SST, SLP, and SIT, allowing us to simultaneously

study these fields in relation to sea-ice reemergence.

Lagged correlations of raw SIC data from CCSM4 display spring-to-fall and

fall-to-spring reemergence of SIC anomalies. The fall-to-spring reemergence is

most active in regions of the central Arctic, such as the CEL and northern BK

Seas. Both types of reemergence are enhanced during periods of time in which

the reemergence mode family is active. This low-dimensional reemergence family

reveals an SIT–SIC fall-to-spring reemergence mechanism. In this mechanism, fall

SIC anomalies imprint like-signed SIT anomalies in the central Arctic. These SIT

anomalies persist over the winter months when the central Arctic becomes fully

ice-covered and loses its fall SIC anomalies. As ice melts the following spring, the

ice edge moves northwards, interacts with the SIT anomalies, and reinherits SIC

anomalies of the same sign as the fall.

We have introduced SIC and SIT reemergence metrics, by which one can

judge the amplitude and phase of reemergence events and the SIT–SIC reemer-

gence mechanism. These metrics display interannual-to-decadal variability in the
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strength and sign of reemergence events. They also clearly display the SIT–SIC

mechanism described above. Consideration of SST and SLP reemergence metrics

demonstrates that the reemergence family additionally captures SST and SLP-

based mechanisms for spring-to-fall sea-ice reemergence. Phase diagrams reveal

that each of these mechanisms has a clear relationship to the seasonal cycle. The

SIT–SIC mechanism has large SIC anomalies in summer, small SIC anomalies in

winter, and SIT anomalies of similar amplitude in all months. The SST–SIC mech-

anism has large winter SIC anomalies, which trade off with the ocean to produce

large summer SST anomalies. The SLP–SIC mechanism has large SIC and SLP

anomalies in winter, with the SLP anomalies leading SIC by about one month.
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Chapter 7

Conclusions

7.1 Summary of findings

In this thesis, we have introduced a novel approach for data analysis of high-

dimensional multivariate timeseries and applied it to climate data from compre-

hensive climate models and observations. Described in Chapter 2, Coupled NLSA

provides a unit-independent analysis of multiple physical fields without requiring

any initial normalization of the input data. We have used this technique as a tool

throughout the thesis to study the statistical and dynamical properties of Arctic

sea-ice reemergence, a phenomenon in which spring sea-ice anomalies tend to recur

the following fall and fall sea-ice anomalies tend to recur the following spring. In

Chapter 3, we studied coupled modes of variability of SST and SIC in the North Pa-

cific sector. These modes were found in three distinct varieties: (1) periodic modes

which reflect the periodic variability of the system; (2) low-frequency modes, which

reflect interannual to decadal variability; and (3) intermittent modes, which reflect

the interaction of the periodic and low-frequency variability of the system, in both
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space and time. The intermittent temporal modes have an important relationship

with the low-frequency modes, in the sense that the low-frequency modes provide

a modulating envelope for the intermittent modes. This relationship was found

to be crucially important in constructing “reemergence families” of modes, which

are low-dimensional and capture the lagged correlation structure of the raw SIC

data. The reemergence families reflect an SST–SIC reemergence mechanism in

which the memory of spring SIC anomalies is stored as SST anomalies, allowing

the SIC anomalies to reemerge the following fall. These families are connected to

the NPGO mode of North Pacific SST variability, which emerges as the leading

low-frequency mode in the coupled NLSA analysis. When conditioning the raw

SIC data on times when the NPGO is active, we observed an enhanced reemergence

signal. We also identified a second reemergence family, related to the PDO, cap-

turing SST reemergence in the North Pacific. This chapter also presented the first

use of NLSA on a timeseries with a relatively small number of samples. Somewhat

surprisingly, the coupled NLSA algorithm performs quite well on the short obser-

vational dataset, successfully extracting periodic, low-frequency, and intermittent

modes of variability.

In Chapter 4, we applied the methodology developed in Chapter 3 to an Arc-

tic domain and added SLP to our analysis. We identified pan-Arctic agreement in

reemergence signals between CCSM3 output and HadISST observations. However,

the two datasets exhibit substantial regional differences in reemergence. The time-

lagged pattern correlation methodology for assessing reemergence provides similar

pan-Arctic results for the model and observations, whereas the total-area lagged

correlation approach shows more substantial reemergence in the model. We also

identified substantial temporal variability in the strength of reemergence events,
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which may have important implications for sea-ice predictability. Low-dimensional

reemergence families were constructed, and reflect the SST–SIC reemergence mech-

anism, particularly in the Bering, Barents-Kara, and Labrador Seas. These regions

also exhibit clear phase relationships in SIC anomalies, which can be explained by

the SLP teleconnection patterns of each family. These SLP patterns provide a

method of communication between geographically separated regions of SIC vari-

ability. The SLP patterns have a natural interpretation as low-passed filtered ver-

sions of the full SLP field. These atmospheric circulation regimes suggest another

potential sea-ice reemergence mechanism, via their winter-to-winter persistence.

The work of Chapter 4 identified an atmospheric role in reemergence, but did

not quantify the relative role and importance of the atmosphere and the ocean in

producing sea-ice reemergence. In Chapter 5, we investigated this question using

a hierarchy of climate models with differing atmospheric and oceanic formula-

tion. Lagged correlations across these datasets indicate the crucial role of oceanic

memory and atmospheric variability in producing reasonable representations of

reemergence. SLP–SIC teleconnections, analogous to those identified in Chapter

4, are found to exist in models with full coupling between the atmosphere and the

ocean. This suggests that dynamical feedback of ocean anomalies on atmospheric

circulation is essential in creating large-scale organized patterns of SIC and SLP

variability. The reemergence families of these models reflect the SST–SIC and

SLP–SIC reemergence mechanisms to varying degrees, and suggest that the SST–

SIC mechanism can exist as a stand-alone process, while the SLP–SIC mechanism

requires interaction with the ocean to produce memory in sea ice.

In Chapter 6, we studied the role of SIT in fall-to-spring Arctic sea-ice reemer-

gence, adding SIT to the analyses of Chapters 4 and 5. We found that a low-
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dimensional family of NLSA modes is able to capture both the spring-to-fall and

fall-to-spring reemergence. The SIT and SIC fields of this family reveal an SIT–SIC

mechanism for reemergence in which persistent winter SIT anomalies in the cen-

tral Arctic allow fall SIC anomalies to reemerge the following spring. This family

also captures the SST–SIC and SLP–SIC spring-to-fall reemergence mechanisms

of Chapters 3–5. We introduced reemergence metrics for these fields, and studied

their relation to the seasonal cycle. The spring-to-fall reemergence is characterized

by SLP–SIC interactions in which wind anomalies tend to lead SIC anomalies by

roughly one month. Additionally, this spring-to-fall reemergence exhibits a clear

tradeoff between summer SST and winter SIC anomalies. Finally, the fall-to-spring

reemergence is characterized by SIC anomalies that are large in summer and small

in winter, and SIT anomalies that are persistent through all months of the year.

7.2 Future work

The work in this thesis has motivated a number of related questions, which

could form the basis for future work. We briefly summarize some of these questions

here.

In Chapters 3–5 all observational datasets and the CORE-II model runs were

detrended by subtracting the monthly linear trend from each month. This was done

with the intention of focusing on the internal variability of these systems. This

assumption of a linear response to changes in external forcing is ad-hoc and may

introduce biases. A research problem of interest is using NLSA to study signals

with strong trends. We have done preliminary work analyzing the observational

SIC dataset without any detrending, finding that NLSA and SSA effectively sepa-
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rate a single “trend” mode and associated intermittent modes. This lies in contrast

to EOF analysis, which mixes the trend signal over a large number of modes. The

spatial reconstruction of the NLSA and SSA trend modes in space captures the

long-term changes in sea-ice, along with the seasonality of this trend. More work is

required to understand the conditions in which NLSA and SSA are able to capture

trend-based variability. If successful, this could be a useful technique to provide a

physically-based detrending of data.

The results of Chapter 4, regarding the temporal variability of reemergence

events, suggest that predictability resulting from reemergence may also be a func-

tion of time. Are high reemergence years intrinsically more predictable than low

reemergence years? In ongoing work with Ed Blanchard-Wrigglesworth, we are in-

vestigating this question by producing ensembles of GCM integrations initialized

in high and low reemergence states. We plan to analyze the predictability in these

two regimes to assess the influence of sea-ice reemergence on intrinsic predictability

of Arctic sea ice.

The results of Chapter 5 suggest that the dynamics and persistence associated

with a full-depth ocean are a crucial element of reemergence. Holland et al. (2013)

investigated the role of heat storage below the mixed layer, but additional work

regarding this is needed. An NLSA-based study investigating the vertical oceanic

structure of sea-ice reemergence could help shed light on the oceanic mechanisms

that contribute to oceanic memory storage.

The emphasis of reemergence signals when conditioning on low-frequency NLSA

modes (Figure 12 of Chapter 3, Figure 15 of Chapter 4, Figure 3 of Chapter 5,

Figure 1 of Chapter 6) suggests that these modes may have value in the context

of statistical sea-ice prediction models. An interesting future direction would be
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to develop statistical prediction methods based on these modes.
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